Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sato, Shunsuke*; Nauchi, Yasushi*; Hayakawa, Takehito*; Kimura, Yasuhiko; Kashima, Takao*; Futakami, Kazuhiro*; Suyama, Kenya
Journal of Nuclear Science and Technology, 9 Pages, 2022/10
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)A new non-destructive method for evaluating Cs activity in spent nuclear fuels was proposed and experimentally demonstrated for physical measurements in burnup credit implementation.
Cs activities were quantified using gamma ray measurements and numerical detector response simulations without reference fuels, in which 137Cs activities are well known. Fuel samples were obtained from a lead use assembly (LUA) irradiated in a commercial pressurized water reactor (PWR) up to 53 GWd/t. Gamma rays emitted from the samples were measured using a bismuth germinate (BGO) scintillation detector through a collimator attached to a hot cell. The detection efficiency of gamma rays with the detector was calculated using the PHITS particle transport calculation code considering the measurement geometry. The relative activities of
Cs,
Cs, and
Eu in the sample were measured with a high-purity germanium (HPGe) detector for more accurate simulations of the detector response for the samples. The absolute efficiency of the detector was calibrated by measuring a standard gamma ray source in another geometry.
Cs activity in the fuel samples was quantified using the measured count rate and detection efficiency. The quantified
Cs activities agreed well with those estimated using the MVP-BURN depletion calculation code.
Isogawa, Hiroki*; Naoi, Motomasa*; Yamasaki, Seiji*; Ho, H. Q.; Katayama, Kazunari*; Matsuura, Hideaki*; Fujimoto, Nozomu*; Ishitsuka, Etsuo
JAEA-Technology 2022-015, 18 Pages, 2022/07
As a summer holiday practical training 2021, the impact of 10 years long-term shutdown on critical control rod position of the HTTR and the delayed neutron fraction () of the VHTRC-1 core were investigated using Monte-Carlo MVP code. As a result, a long-term shutdown of 10 years caused the critical control rods of the HTTR to withdraw about 4.0
0.8 cm compared to 3.9 cm in the experiment. The change in critical control rods position of the HTTR is due to the change of some fission products such as
Pu,
Am,
Pm,
Sm,
Gd. Regarding the
calculation of the VHTRC-1 core, the
value is underestimate of about 10% in comparison with the experiment value.
Ishitsuka, Etsuo; Mitsui, Wataru*; Yamamoto, Yudai*; Nakagawa, Kyoichi*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Nagasumi, Satoru; Takamatsu, Kuniyoshi; Kenzhina, I.*; et al.
JAEA-Technology 2021-016, 16 Pages, 2021/09
As a summer holiday practical training 2020, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the downsizing of reactor core were studied by the MVP-BURN. As a result, it is clear that a 1.6 m radius reactor core, containing 54 (183 layers) fuel blocks with 20% enrichment of
U, and BeO neutron reflector, could operate continuously for 30 years with thermal power of 5 MW. Number of fuel blocks of this compact core is 36% of the HTTR core. As a next step, the further downsizing of core by changing materials of the fuel block will be studied.
Ikeda, Reiji*; Ho, H. Q.; Nagasumi, Satoru; Ishii, Toshiaki; Hamamoto, Shimpei; Nakano, Yumi*; Ishitsuka, Etsuo; Fujimoto, Nozomu*
JAEA-Technology 2021-015, 32 Pages, 2021/09
Burnup calculation of the HTTR considering temperature distribution and detailed burning regions was carried out using MVP-BURN code. The results show that the difference in k, as well as the difference in average density of some main isotopes, is insignificant between the cases of uniform temperature and detailed temperature distribution. However, the difference in local density is noticeable, being 6% and 8% for
U and
Pu, respectively, and even 30% for the burnable poison
B. Regarding the division of burning regions to more detail, the change of k
is also small of 0.6%
k/k or less. The small burning region gives a detailed distribution of isotopes such as
U,
Pu, and
B. As a result, the effect of graphite reflector and the burnup behavior could be evaluated more clearly compared with the previous study.
Ishitsuka, Etsuo; Nakashima, Koki*; Nakagawa, Naoki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Matsuura, Hideaki*; et al.
JAEA-Technology 2020-008, 16 Pages, 2020/08
As a summer holiday practical training 2019, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the U enrichment and burnable poison of the fuel, which enables continuous operation for 30 years with thermal power of 5 MW, were studied by the MVP-BURN. As a result, it is clear that a fuel with
U enrichment of 12%, radius of burnable poison and natural boron concentration of 1.5 cm and 2wt% are required. As a next step, the downsizing of core will be studied.
Kugo, Teruhiko
Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, p.821 - 826, 2001/00
no abstracts in English
Kojima, Kensuke; Okumura, Keisuke
no journal, ,
The MOSRA system has been developing to improve the applicability of the neutronic characteristic analyses. The cell calculation module MOSRA-SRAC is a core module of MOSRA, and applicability tests for realistic problems are required. As a test, we joined the benchmark "Burnup Credit Criticality Benchmark Phase IIIC". The benchmark requested the neutronic characteristics for a BWR fuel assembly with gadolinium, which had been used in the TEPCO's Fukushima Daiichi Nuclear Power Station. Because of a restriction of MOSRA-SRAC, the geometry was partially homogenized. To verify the module's applicability including the homogenization effects, the multiplication factor and the nuclide compositions were compared with the well-validated code MVP-BURN. As the results, the applicability of MSORA-SRAC for the assembly was verified. Additionally, it was also shown that the homogenization effects were smaller than the difference due to the calculation methods.
Ikeda, Reiji*; Ho, H. Q.; Fujimoto, Nozomu*; Hamamoto, Shimpei; Nagasumi, Satoru; Ishitsuka, Etsuo
no journal, ,
no abstracts in English
Ikeda, Reiji*; Ho, H. Q.; Fujimoto, Nozomu*; Hamamoto, Shimpei; Nagasumi, Satoru; Ishitsuka, Etsuo
no journal, ,
no abstracts in English