Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Auh, Y. H.*; Neal, N. N.*; Arole, K.*; Regis, N. A.*; Nguyen, T.*; Ogawa, Shuichi*; Tsuda, Yasutaka; Yoshigoe, Akitaka; Radovic, M.*; Green, M. J.*; et al.
ACS Applied Materials & Interfaces, 17(21), p.31392 - 31402, 2025/05
Times Cited Count:0 Percentile:0.00(Nanoscience & Nanotechnology)Aso, Seiyu*; Matsuo, Hiroki*; Yoneda, Yasuhiro; Morikawa, Daisuke*; Tsuda, Kenji*; Oyama, Kenji*; Ishigaki, Toru*; Noguchi, Yuji*
Physical Review B, 111(17), p.174114_1 - 174114_12, 2025/05
We investigate the crystal structures, phase transitions, and phase stability of undoped and Ca-modified NaNbO through a combined analysis of high-resolution synchrotron radiation X-ray and neutron diffraction, convergent-beam electron diffraction, and density functional theory (DFT) calculations. It is demonstrated that the antiferroelectric (AFE)-
phase is stabilized over a wide temperature range of 200 to 800 K by Ca modification, and that the NaNbO
is stabilized by temperature-driven isostatic pressure accompanied by lattice expansion, whereas the Ca-modified NaNbO
is induced by composition-induced chemical pressure along with lattice shrinkage.
Abe, Takumi; Oizumi, Akito; Nishihara, Kenji; Nakase, Masahiko*; Asano, Hidekazu*; Takeshita, Kenji*
Progress in Nuclear Science and Technology (Internet), 7, p.299 - 304, 2025/05
Currently, much research continues on stable energy sources that do not emit CO in order to achieve a carbon-neutral and sustainable society. Nuclear energy is one of the such sources, and various new reactors and reprocessing technologies are being developed. In order to implement the nuclear fuel cycle with these technologies, a nuclear fuel cycle simulator is required to quantitatively evaluate various quantities, such as the distribution of nuclear fuel materials and the scale of waste loading. For this purpose, NMB4.0 was developed in collaboration with Tokyo Institute of Technology and Japan Atomic Energy Agency. This code calculates the material balance of 179 nuclides including actinides and fission products (FPs) from the front-end to the back-end and simulates the nuclear fuel cycle in an integrated manner. Unlike other nuclear fuel cycle simulators, the code is capable of performing precise back-end analyses such as the number of radioactive wastes and the scale of the geological repository considering heat generation of waste package under diverse nuclear energy scenario, and is an open source code that runs on Microsoft Excel. By these features, it is possible to quantitatively study nuclear energy utilization strategies with various stakeholders. The presentation will detail the numerical model used in NMB4.0.
Niu, X.*; Elakneswaran, Y.*; Li, A.*; Seralathan, S.*; Kikuchi, Ryosuke*; Hiraki, Yoshihisa; Sato, Junya; Osugi, Takeshi; Walkley, B.*
Cement and Concrete Research, 190, p.107814_1 - 107814_17, 2025/04
Times Cited Count:0 Percentile:0.00(Construction & Building Technology)Meigo, Shinichiro; Iwamoto, Hiroki; Sugihara, Kenta*; Hirano, Yukinori*; Tsutsumi, Kazuyoshi*; Saito, Shigeru; Maekawa, Fujio
JAEA-Technology 2024-026, 123 Pages, 2025/03
Based on the design of the ADS Target Test Facility (TEF-T) at the J-PARC Transmutation Experimental Facility, a conceptual study was conducted on the J-PARC proton beam irradiation facility. This research was carried out based on the recommendations of the Nuclear Transmutation Technology Evaluation Task Force of the MEXT. The recommendations state that it is desirable to consider facility specifications that can make the most of the benefits of using the existing J-PARC proton accelerator while also solving the engineering issues of the ADS. We considered facilities that could respond to a variety of needs while reducing the facilities that were not needed in the TEF-T design. In order to clarify these diverse needs, we investigated the usage status of representative accelerator facilities around the world. As a result, it became clear that the main purposes of these facilities were (1) Material irradiation, (2) Soft error testing of semiconductor devices using spallation neutrons, (3) Production of RI for medical use, and (4) Proton beam use, and we investigated the facilities necessary for these purposes. In considering the facility concept, we assumed a user community in 2022 and reflected user opinions in the facility design. This report summarizes the results of the conceptual study of the proton irradiation facility, various needs and responses to them, the roadmap for facility construction, and future issues.
Wang, Y.*; Zeng, X.-T.*; Li, B.*; Su, C.*; Hattori, Takanori; Sheng, X.-L.*; Jin, W.*
Chinese Physics B, 34(4), p.046203_1 - 046203_6, 2025/03
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Two-dimensional van der Waals ferromagnet FeGeTe
(FGT) holds a great potential for applications in spintronic devices, due to its high Curie temperature, easy tunability, and excellent structural stability in air. In this study, we have performed high-pressure neutron powder diffraction (NPD) up to 5 GPa, to investigate the evolution of its structural and magnetic properties with hydrostatic pressure. The NPD data clearly reveal the robustness of the ferromagnetism in FGT, despite of an apparent suppression by hydrostatic pressure. As the pressure increases from 0 to 5 GPa, the Curie temperature is found to decrease monotonically from 225(5) K to 175(5) K, together with a dramatically suppressed ordered moment of Fe, which is well supported by the first-principles calculations. Although no pressure-driven structural phase transition is observed up to 5 GPa, quantitative analysis on the changes of bond lengths and bond angles indicate a significant modification of the exchange interactions, which accounts for the pressure-induced suppression of the ferromagnetism in FGT.
Tanabe, Kosuke*; Komeda, Masao; Toh, Yosuke; Kitamura, Yasunori*; Misawa, Tsuyoshi*
Nihon Genshiryoku Gakkai-Shi ATOMO, 67(3), p.198 - 202, 2025/03
no abstracts in English
Chung, J.-H.*; Kwangwoo, S.*; Yokoo, Tetsuya R.; Ueta, Daichi*; Imai, Masaki; Kim, H.-S.; Kiem, D. H.; Han, M. J.*; Shamoto, Shinichi
Scientific Reports (Internet), 15, p.5978_1 - 5978_10, 2025/02
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)Miura, Taito*; Miyamoto, Shintoro*; Maruyama, Ippei*; Aili, A.*; Sato, Takumi; Nagae, Yuji; Igarashi, Go*
Case Studies in Construction Materials, 21, p.e03571_1 - e03571_14, 2024/12
Times Cited Count:0 Percentile:0.00(Construction & Building Technology)Wakui, Takashi; Saito, Shigeru; Futakawa, Masatoshi
Jikken Rikigaku, 24(4), p.212 - 218, 2024/12
Irradiation damage is one of the main factors determining the lifetime of the mercury target vessel for spallation neutron source in J-PARC. To understand material degradation of the used vessels, it is planned to conduct an evaluation using inverse analyses with indentation tests on the structural materials of the used vessels and numerical experiments. This evaluation technique was applied to two kinds of ion-irradiated materials with different displacement damage doses, in which the irradiation condition was simulated. It could be confirmed that the ultimate strength increased, and the total elongation decreased with increasing irradiation. These trends are like the material degradation behaviors which have been reported by using small specimen's tensile tests.
Naeem, M.*; Ma, Y.*; Knowles, A. J.*; Gong, W.; Harjo, S.; Wang, X.-L.*; Romero Resendiz, L.*; 6 of others*
Materials Science & Engineering A, 916, p.147374_1 - 147374_8, 2024/11
Times Cited Count:3 Percentile:57.76(Nanoscience & Nanotechnology)Center for Computational Science & e-Systems
JAEA-Evaluation 2024-001, 40 Pages, 2024/10
Research on advanced computational science for nuclear applications, based on "the plan to achieve the medium- and long-term goal of the Japan Atomic Energy Agency", has been performed by Center for Computational Science & e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established a committee consisting of external experts and authorities which evaluates and advises toward the future research and development. This report summarizes the results of the R&D performed by CCSE in FY2023 (April 1st, 2023 - March 31st, 2024) and their evaluation by the committee.
Teshigawara, Makoto; Ikeda, Yujiro*; Muramatsu, Kazuo*; Sutani, Koichi*; Fukuzumi, Masafumi*; Noda, Yohei*; Koizumi, Satoshi*; Saruta, Koichi; Otake, Yoshie*
Journal of Neutron Research, 26(2-3), p.69 - 74, 2024/09
Slow neutrons, such as cold neutrons, are important non-destructive probes not only for basic physics but also for the structural genomics advancements in the life sciences and the battery technology advancements needed for the transition to a hydrogen society. Neutron-based science is also known as high-neutron-intensity-dependent science. A new unique method focusing on nanosized particle aggregation has been proposed to increase neutron intensity in that energy region. The method is based on intensity enhancement by multiple coherent scatterings with nanosized particle aggregation. The aggregation of nanosized particles matches the wavelength of below cold neutrons, causing a similar effect to coherent scattering, so-called Bragg scattering, leading to neutron intensity enhancement by several orders of magnitude. Nanodiamonds and magnesium hydride have recently been studied numerically and experimentally. The major challenge with nanodiamonds in practical applications is the molding method. Another carbon structure, graphene is focused on to find a solution to this problem. It is hypothesized that nanosized graphene could aid coherent neutron scattering under particle size conditions similar to nanodiamonds. We report the potential of nanosized graphene as a reflector material below cold neutrons, together with experimental results.
Machida, Shinichi*; Hattori, Takanori; Nakano, Satoshi*; Sano, Asami; Funakoshi, Kenichi*; Abe, Jun*
Koatsuryoku No Kagaku To Gijutsu, 34(3), p.134 - 142, 2024/09
A diamond anvil cell (DAC) for high-pressure neutron diffraction experiments has been developed at the PLANET beamline, Materials and Life Science Experimental Facility, in J-PARC. The conically supported diamond anvils were used for high-pressure generation. We succeeded in obtaining the neutron data for DO ice up to 69.4 GPa. In addition, the gasket materials suitable for the neutron diffraction measurements were investigated. 11 kinds of alloys were tested and SUS304, Inconel718 and M2052 (73Mn-20Cu-5Ni-2Fe, at%) alloys showed excellent performance. Especially, M2052 null-matrix alloy has proven to be useful for neutron diffraction experiments where the beam inevitably hits the gasket. We then obtained refinable neutron diffraction profiles in Rietveld analysis from D
O ice at least up to 43.3 GPa.
Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2024-010, 112 Pages, 2024/08
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Uncertainty reduction of the FPs transport mechanism and debris degradation behavior and evaluation of the reactor contamination of debris state on the basis of the accident progression scenario of Fukushima Daiichi Nuclear Power Station Unit 2 and 3" conducted in FY2022. The present study aims to elucidate the cause of the high dosage under shield plug by clarification of to the cesium behavior of migration, adhesion to structure and deposition as well as evaluate the properties of metal-rich debris predeceasing melted through the materials science approach based on the most probable scenario of accident progression of Unit 2 and 3. In this fiscal year, the followings were achieved.
Shimomura, Kenta; Yamashita, Takuya; Nagae, Yuji
Proceedings of 11th European Review Meeting on Severe Accident Research Conference (ERMSAR 2024) (Internet), 12 Pages, 2024/05
funabiki, Yuta*; Iyota, Muneyoshi*; Shobu, Takahisa; Matsuda, Tomoki*; Hayashi, Yujiro*; Sano, Tomokazu*; 8 of others*
Journal of Manufacturing Processes, 115, p.40 - 55, 2024/04
Times Cited Count:4 Percentile:78.76(Engineering, Manufacturing)Yamashita, Kiyoto; Maki, Shota; Yokosuka, Kazuhiro; Fukui, Masahiro; Iemura, Keisuke
JAEA-Technology 2023-023, 97 Pages, 2024/03
The incinerator adopted to incineration room, Plutonium Waste Treatment Facility had been demonstrated since 2002 for developing technologies to reduce the volume of fire-resistant wastes such as vinyl chloride (represented by Polyvinyl chloride bags) and rubber gloves for Radio Isotope among radioactive solid wastes generated by the production of mixed oxide fuels. The incinerator, cooling tower, and processing pipes were replaced with a suspension period from 2018 to 2022, which fireproof materials on the inner wall of the incinerator was cracked and grown caused by hydrogen chloride generated when disposing of fire-resistant wastes. This facility consists of the waste feed process, the incineration process, the waste gas treatment process, and the ash removal process. We replaced the cooling tower in the waste gas treatment process from March 2020 to March 2021, and the incinerator in the incineration process from January 2021 to February 2022. In addition, samples were collected from the incinerator and the cooling tower during the removing and dismantling of the replaced devices, observed by Scanning Electron Microscope and X-ray microanalyzer, and analyzed by X-ray diffraction to investigate the corrosion and deterioration of them. This report describes the method of setting up the green house, the procedure for replacing them, and the results from analysis in corrosion and deterioration of the cooling tower and incinerator.
Tsuchiya, Harufumi; Toh, Yosuke; Ozu, Akira; Furutaka, Kazuyoshi; Kitatani, Fumito; Maeda, Makoto; Komeda, Masao
Journal of Nuclear Science and Technology, 60(11), p.1301 - 1312, 2023/11
Times Cited Count:3 Percentile:59.85(Nuclear Science & Technology)Furutaka, Kazuyoshi; Ozu, Akira; Toh, Yosuke
Nuclear Engineering and Technology, 55(11), p.4002 - 4018, 2023/11
Times Cited Count:1 Percentile:23.64(Nuclear Science & Technology)