Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; Hanakawa, Hiroki; Ide, Hiroshi
JAEA-Technology 2022-029, 55 Pages, 2023/02
Japan Materials Testing Reactor (JMTR) was decided as a one of decommission facilities in April 2017. The activation activity of secondary radioactive contamination remaining in the reactor facility was evaluated in order to submit the decommissioning plan to the Nuclear Regulation Authority. Total activation activity was 2.7310
Bq after 12 years, 1.46
10
Bq after 21 years, respectively. The system with high activation activity was the primary cooling system in JMTR. The relatively large radionuclide was H-3, Fe-55, Co-60, Ni-63, Sr-90 and Cs-137. The radioactivity level was classified based on the values of the obtained radioactivity concentration. As a result, the primary cooling system and the drain system was classified as L2, and others was classified as L3. The nuclide that affected classification result was only Co-60 in irradiation facility of HR-1 and OSF-1. H-3, Co-60, Sr-90, Cs-137 and so on were affected classification in other system. When treating and disposing of radioactive waste, evaluation will be carried out based on appropriate methods.
Kawamura, Sho; Kikuchi, Masanobu; Hosoya, Toshiaki
JAEA-Technology 2021-041, 103 Pages, 2023/02
In response to new regulatory standard for research and test reactor which is enforced December 2013, JRR-3 got license in November 2018 by formulate new design basis ground motion. After that we evaluated for insertion property of control rod using that new design basis ground motion, and that evaluation results were accepted as approval of the design and construction method by Nuclear Regulation Authority. Now, we re-evaluated to insertion property of control rod about neutron absorber and follower fuel element by time history response analysis method. In this report, it shows that new results have sufficiency of margin compared with the past results that are accepted as approval of the design and construction method.
Kikuchi, Masanobu; Kawamura, Sho; Hosoya, Toshiaki
JAEA-Technology 2021-040, 86 Pages, 2023/02
In JRR-3, in response to new regulatory standard for research and test reactor which is enforced December 2013, we established new design basis ground motion for confirming new regulatory standard and carried out seismic evaluations of the appointments, instruments and structures which are installed in JRR-3 by using that earthquake motion. This report shows that the result of evaluations by fatigue strength evaluation, which is more detailed evaluation approach, about Control Rod Drive Mechanism (CRDM) and the CRDM Guide Tube that have gotten the serious result of seismic safety margin by using time history response analysis method. As a result, it was confirmed that CRDM and the CRDM Guide Tube have sufficient seismic safety margin.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Electro-Communications*
JAEA-Review 2022-029, 37 Pages, 2022/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Semiautonomous remote-control technology of an articulated mobile robot to recover from stuck states" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The purpose of this work is to establish a recovery method of an articulated mobile robot from stuck states. In this work, a control method of the robot to recover from stuck states by using redundancy of the system is proposed. In addition, we develop two interfaces. One is a display interface as an operator can understand the situation of the robot and surrounding terrain, and the other is a control interface to provide a target motion using the proposed control method. Finally,
Maruyama, Shuhei
Proceedings of International Conference on Physics of Reactors 2022 (PHYSOR 2022) (Internet), 10 Pages, 2022/05
This paper proposes a new homogenization method, "Boundary Condition Free Homogenization (BCFH)". The traditional homogenization method separates the core calculation and the cell (assembly) calculation by assuming a specific boundary condition or a peripheral region in the cell calculation. Nevertheless, there are ambiguities and approximation in these assumptions, and they can also cause a decline in accuracy. BCFH aims to avoid these problems and improve the accuracy in the cell calculation such as homogenization. We imposed the conditions that the physical quantities in the cell related to the reaction rate preservation is preserved for any incoming partial current, during the homogenization. That is, the response matrices of cell average (or total) flux and outgoing partial current, to be the same form between heterogeneous and homogeneous system. As a result, homogenized parameters, such as cross-sections, superhomgenization factors, and discontinuity factors, are no longer dependent on a specific boundary condition. The new homogenized parameters obtained in this way are extended from the conventional vector form to the matrix form in BCFH. To investigate the performance of BCFH, numerical tests are done for the simplified models which originates in 750MW-class sodium-cooled fast reactor with MOX fuel core in Japan. It is found that BCFH is particularly effective in evaluating control rod reactivity worth and reaction rate distribution, compared to the traditional method. We conclude that the BCFH can be a promising homogenization concept for core neutronic analysis.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Electro-Communications*
JAEA-Review 2021-025, 33 Pages, 2021/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Semi- autonomous remote-control technology of an articulated mobile robot to recover from stuck states" conducted in FY2020. The purpose of this work is to establish a recovery method of an articulated mobile robot from stuck states. In this work, a control method of the robot to recover from stuck states by using redundancy of the system is proposed. In addition, we develop two interfaces. One is a display interface as an operator can understand the situation of the robot and surrounding terrain, and the other is a control interface to provide a target motion using the proposed control method. Finally, the effectiveness of them is demonstrated by experiments using an actual robot.
Takahashi, Fumiaki; Manabe, Kentaro; Sato, Kaoru
JAEA-Review 2020-068, 114 Pages, 2021/03
Radiation safety regulations have been currently established based on the 1990Recommendation by the International Commission on Radiological Protection (ICRP) in Japan. Meanwhile, ICRP released the 2007 Recommendation that replaces the 1990 Recommendation. Thus, the Radiation Council, which is established under the Nuclear Regulation Authority (NRA), has made discussions to incorporate the purpose of the 2007 Recommendation into Japanese regulations for radiation safety. As ICRP also has published effective dose coefficients for internal exposure assessment in accordance with the 2007recommendation, the technical standards are to be revised for the internal exposure assessment method in Japan. Currently, not all of the effective doses have been published to revise concentration limits for internal exposure protections of workers and public. The published effective dose coefficients are applied to radionuclides which are important in radiation protection for internal exposure of a worker. Thus, we review new effective dose coefficients as well as basic dosimetry models and data based upon Occupational Intakes of Radionuclides (OIR) parts 2, 3 and 4 that have been published from 2016 to 2019 by ICRP. In addition, issues are sorted out to provide information for revision of the technical standards for internal exposure assessment based on the 2007 Recommendations in future.
Yonomoto, Taisuke; Nakashima, Hiroshi*; Sono, Hiroki; Kishimoto, Katsumi; Izawa, Kazuhiko; Kinase, Masami; Osa, Akihiko; Ogawa, Kazuhiko; Horiguchi, Hironori; Inoi, Hiroyuki; et al.
JAEA-Review 2020-056, 51 Pages, 2021/03
A group named as "The group for investigation of reasonable safety assurance based on graded approach", which consists of about 10 staffs from Sector of Nuclear Science Research, Safety and Nuclear Security Administration Department, departments for management of nuclear facility, Sector of Nuclear Safety Research and Emergency Preparedness, aims to realize effective graded approach (GA) about management of facilities and regulatory compliance of JAEA. The group started its activities in September, 2019 and has had discussions through 10 meetings and email communications. In the meetings, basic ideas of GA, status of compliance with new regulatory standards at each facility, new inspection system, etc were discussed, while individual investigation at each facility were shared among the members. This report is compiled with expectation that it will help promote rational and effective safety management based on GA by sharing contents of the activity widely inside and outside JAEA.
Yonomoto, Taisuke; Mineo, Hideaki; Murayama, Yoji; Hohara, Shinya*; Nakajima, Ken*; Nakatsuka, Toru; Uesaka, Mitsuru*
Nihon Genshiryoku Gakkai-Shi ATOMO, 63(1), p.73 - 77, 2021/01
no abstracts in English
Collaborative Laboratories for Advanced Decommissioning Science; The University of Electro-Communications*
JAEA-Review 2020-025, 34 Pages, 2020/12
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Semiautonomous Remote-control Technology of an Articulated Mobile Robot to Recover from Stuck States". The purpose of this work is to establish a recovery method of an articulated mobile robot from stuck states. In this work, a control method of the robot to recover from stuck states by using redundancy of the system is proposed. In addition, we develop two interfaces. One is a display interface as an operator can understand the situation of the robot and surrounding terrain, and the other is a control interface to provide a target motion using the proposed control method. Finally, the effectiveness of them is demonstrated by experiments using an actual robot.
Ono, Masato; Hanawa, Yoshio; Sonobe, Hiroshi; Nishimura, Arashi; Sugaya, Naoto; Iigaki, Kazuhiko
JAEA-Technology 2020-010, 14 Pages, 2020/09
In response to new standard for regulating research and test reactor which is enforced December 18, 2013, it was carried out assessment of the probability of aircraft crashing for HTTR. According to assessment method provided in the Assessment Criteria of the Probability of Aircraft Crashing on Commercial Power Reactor Facilities, assessment was conducted targeting reactor building, spent fuel storage building and cooling tower. As a result, it was confirmed that the probability was 5.9810
, which is lower than the assessment criteria 10
.
Wang, Z.; Duan, G.*; Matsunaga, Takuya*; Sugiyama, Tomoyuki
International Journal of Heat and Mass Transfer, 157, p.119919_1 - 119919_20, 2020/08
Times Cited Count:10 Percentile:70.9(Thermodynamics)Motome, Yuiko; Akiyama, Yoshiya; Murao, Hiroyuki
Journal of Nuclear Engineering and Radiation Science, 6(2), p.021115_1 - 021115_11, 2020/04
The nuclear safety research reactor (NSRR) is a research reactor of training research isotopes general atomics -annular core pulse reactor type. The NSRR facility has been utilized for fuel irradiation experiments to study the behaviors of nuclear fuels under reactivity-initiated accident conditions. Under the new regulation standards, which was established after the Fukushima Daiichi accident, research reactors are regulated based on the risk of the facilities. To apply the graded approach, the radiation effects on residents living around the NSRR under the external hazards were evaluated, and the level of the risk of the NSRR facility was investigated. This paper summarizes the result of the evaluation in the case where the safety functions are lost due to a tornado, an earthquake followed by a tsunami. All in all, the risk is confirmed to be relatively low, since the effective dose on the residents is found to be below 5 mSv per event due to the loss of the safety functions.
Matsumura, Taichi; Nagaishi, Ryuji; Katakura, Junichi*; Suzuki, Masahide*
Radiation Physics and Chemistry, 166, p.108493_1 - 108493_9, 2020/01
Times Cited Count:1 Percentile:16.13(Chemistry, Physical)In this work, when radiation sources of Cs,
Sr and
Y were assumed to be put in the front of a plain SUS304 plate as a typical material submerged in water, energy spectra of secondary photons and electrons at the front and back sides of plate were simulated with changing the thickness of plate, and spacing between the source and plate by using a Monte Carlo calculation code of PHITS. In the case of
Cs gamma-ray (monochromatic 662 keV), the energy spectra at the front side was smaller than those at the back side due to the existence of plate. Then the dependence of spectra on the plate thickness was observed more clearly at the back side than at the front side. It was clearly shown how the energy spectra of photons and electrons varied with the incident radiation type, the spacing, and the thickness.
Omer, M.; Shizuma, Toshiyuki*; Hajima, Ryoichi*; Koizumi, Mitsuo
Nihon Kaku Busshitsu Kanri Gakkai Dai-40-Kai Nenji Taikai Puroshidhingusushu, p.59 - 62, 2019/11
Kondo, Hiroo*; Kanemura, Takuji*; Park, C. H.*; Oyaizu, Makoto*; Hirakawa, Yasushi; Furukawa, Tomohiro
Fusion Engineering and Design, 146(Part A), p.285 - 288, 2019/09
Times Cited Count:1 Percentile:13.41(Nuclear Science & Technology)Herein, the wall shear stress in a double contraction nozzle has been evaluated experimentally to produce a liquid lithium (Li) target as a beam target for intense fusion neutron sources such as the International Fusion Materials Irradiation Facility (IFMIF), the Advanced Fusion Neutron Source (A-FNS), and the DEMO Oriented Neutron Source (DONES). The boundary layer thickness and wall shear stress are essential physical parameters to understand erosion-corrosion by the high-speed liquid Li flow in the nozzle, which is the key component in producing a stable Li target. Therefore, these parameters were experimentally evaluated using an acrylic mock-up of the target assembly. The velocity distribution in the nozzle was measured by a laser-doppler velocimeter and the momentum thickness along the nozzle wall was calculated using an empirical prediction method. The resulting momentum thickness was used to estimate the variation of the wall shear stress along the nozzle wall. Consequently, the wall shear stress was at the maximum in the second convergent section in front of the nozzle exit.
Narukawa, Takafumi; Yamaguchi, Akira*; Jang, S.*; Amaya, Masaki
Proceedings of 14th International Conference on Probabilistic Safety Assessment and Management (PSAM-14) (USB Flash Drive), 10 Pages, 2018/09
Motome, Yuiko; Akiyama, Yoshiya; Murao, Hiroyuki
Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 8 Pages, 2018/07
The NSRR is a research reactor of TRIGA-ACPR type, located in the Nuclear Science Research Institute. The NSRR facility has been utilized for fuel irradiation experiments to study the behaviors of nuclear fuels under reactivity initiated accident conditions. Under the new regulation standards after the Fukushima Daiichi accident, the research reactors are being regulated according to the risk of the facility. Graded approach is introduced in the regulation. In order to apply the graded approach, the radiation effects of residents living around the NSRI under the external hazards were evaluated and the level of the risk of the NSRR facility was investigating. This report is summarized for the result of the evaluation in case the safety functions were lost by the tornado, earthquake and following tsunami. As the result, the risk is confirmed to be low, since the effective dose of the residents has been below 5 mSv per event due to the loss of the safety functions by the tornado, earthquake and following tsunami.
Narukawa, Takafumi; Yamaguchi, Akira*; Jang, S.*; Amaya, Masaki
Nuclear Engineering and Design, 331, p.147 - 152, 2018/05
Times Cited Count:1 Percentile:12.83(Nuclear Science & Technology)Rodriguez, D.; Rossi, F.; Takamine, Jun; Koizumi, Mitsuo; Seya, Michio; Crochemore, J. M.*; Varasano, G.*; Bogucarska, T.*; Abbas, K.*; Pedersen, B.*
Proceedings of INMM 58th Annual Meeting (Internet), 6 Pages, 2017/07
The JAEA is collaborating with the EC-JRC to develop a NDA system combining four active techniques to improve safeguards verification. Delayed gamma-ray spectroscopy can determine nuclide ratios by correlating observed fission products' time-dependent, high-energy, rays to the sample's complex fission yield. To quantify fissile nuclides of significant interest, the fast neutrons from compact, transportable sources must be thermalized to where the fissile nuclides have large cross-sections while maintaining high fluxes to provide significant signals. Experiments are underway at some facilities to improve DGS, including the PUNITA system at JRC-Ispra. These neutron fluxes and measurement conditions are used to develop a Monte Carlo that will be used to analyze the DGS data by an inverse-MC method. The DGS program described here summarizes the 3-year development to optimize the moderator, perform experiments, and create the IMC in preparation for a demonstration of the technique.