Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Shaimerdenov, A.*; Gizatulin, S.*; Dyussambayev, D.*; Askerbekov, S.*; Ueta, Shohei; Aihara, Jun; Shibata, Taiju; Sakaba, Nariaki
Nuclear Engineering and Technology, 54(8), p.2792 - 2800, 2022/08
Times Cited Count:8 Percentile:82.31(Nuclear Science & Technology)Nakajima, Norihiro; Nishida, Akemi; Kawakami, Yoshiaki; Suzuki, Yoshio; Sawa, Kazuhiro; Iigaki, Kazuhiko
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 5 Pages, 2015/05
A numerical analysis controlling and managing system is implemented on K, which controls the modelling process and data treating, although the manager only controls a structural analysis by finite element method. The modeling process is described by the list of function ID and its procedures in a data base. The manager executes the process by order in the list for simulation procedures. The manager controls the intention of an analysis by changing the analytical process one to another. Experiments were carried out with static and dynamic analyses.
Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Iyoku, Tatsuo
Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-11) (CD-ROM), 12 Pages, 2005/10
Safety demonstration tests using the HTTR are in progress to verify the inherent safety features, to improve the safety design and the technologies for High Temperature Gas-cooled Reactors (HTGRs). The coolant flow reduction test by tripping one or two out of three gas circulators is one of the safety demonstration tests. The reactor power safely becomes a stable level without a reactor scram and the temperature transient of the reactor-core is very slow. The SIRIUS code was developed to analyze reactor transient during the tests with reactor dynamics. This paper describes the validation of the SIRIUS code with the measured values of one and two gas circulators tripping test at 30% (9 MW). It was confirmed that the SIRIUS code was able to analyze the reactor transient within 10% during the tests. The result of this study and the way of resolving problems can be applied to development for not only the commercial HTGRs but also the Very High Temperature Reactor (VHTR) as one of the Generation IV reactors.
Tochio, Daisuke; Nakagawa, Shigeaki
JAERI-Tech 2005-040, 39 Pages, 2005/07
In High Temperature Engineering Test Reactor (HTTR) of 30 MW, the generated heat at reactor core is finally dissipated at the air-cooler by way of the heat exchangers of the primary pressurized water cooler and the intermediate heat exchanger. Heat exchangers in main cooling system of HTTR should satisfy two conditions, achievement of reactor coolant outlet temperature 850 C/950
C and removal of reactor generated heat 30 MW. That is, heat exchange performance should be ensured as that in heat exchanger designing. In this report, heat exchange performance for Intermediate heat exchanger (IHX) in main cooling system is evaluated with rise-to-power-up test and in-service operation data. Moreover, the applicability of IHX thermal-hydraulic design method is discussed with comparison of evaluated data with designed value.
Takamatsu, Kuniyoshi; Nakagawa, Shigeaki
JAERI-Data/Code 2005-003, 31 Pages, 2005/06
Safety demonstration tests using the High Temperature engineering Test Reactor (HTTR) are in progress to verify the inherent safety features for High Temperature Gas-cooled Reactors (HTGRs). The coolant flow reduction test by tripping gas circulators is one of the safety demonstration tests. The reactor power safely brings to a stable level without a reactor scram and the temperature transient of the reactor-core is very slow. The TAC/BLOOST code was developed to analyze reactor and temperature transient during the coolant flow reduction test taking account of reactor dynamics. This paper describes the validation result of the TAC/BLOOST code with the measured values of gas circulators tripping tests at 30 % (9 MW). It was confirmed that the TAC/BLOOST code was able to analyze the reactor transient during the test.
Tochio, Daisuke; Nakagawa, Shigeaki; Furusawa, Takayuki*
Nihon Genshiryoku Gakkai Wabun Rombunshi, 4(2), p.147 - 155, 2005/06
High Temperature Engineering Test Reactor (HTTR) of high temperature gas-cooled reactor at JAERI achieved the reactor outlet coolant temperature of 950C for the first time in the world at Apr. 19, 2004. To remove of generated heat at reactor core and to hold reactor inlet coolant temperature as specified temperature, heat exchangers in HTTR main cooling system should have designed heat exchange performance. In this report, heat exchanger performance is evaluated based on measurement data in high temperature test operation. And it is confirmed the adequacy of heat exchanger designing method by comparison of evaluated value with designed value.
Iyoku, Tatsuo; Nakagawa, Shigeaki; Takamatsu, Kuniyoshi
UTNL-R-0446, p.14_1 - 14_9, 2005/03
no abstracts in English
Fujikawa, Seigo; Hayashi, Hideyuki; Nakazawa, Toshio; Kawasaki, Kozo; Iyoku, Tatsuo; Nakagawa, Shigeaki; Sakaba, Nariaki
Journal of Nuclear Science and Technology, 41(12), p.1245 - 1254, 2004/12
Times Cited Count:96 Percentile:97.86(Nuclear Science & Technology)A High Temperature Gas-cooled Reactor (HTGR) is particularly attractive due to its capability of producing high-temperature helium gas and to its inherent safety characteristics. The High Temperature Engineering Test Reactor (HTTR), which is the first HTGR in Japan, achieved its rated thermal power of 30MW and reactor-outlet coolant temperature of 950C on 19 April 2004. During the high-temperature test operation which is the final phase of the rise-to-power tests, reactor characteristics and reactor performance were confirmed, and reactor operations were monitored to demonstrate the safety and stability of operation. The reactor-outlet coolant temperature of 950
C makes it possible to extend high-temperature gas-cooled reactor use beyond the field of electric power. Also, highly effective power generation with a high-temperature gas turbine becomes possible, as does hydrogen production from water. The achievement of 950
C will be a major contribution to the actualization of producing hydrogen from water using the high-temperature gas-cooled reactors. This report describes the results of the high-temperature test operation of the HTTR.
Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Sakaba, Nariaki; Takada, Eiji*; Tochio, Daisuke; Shimakawa, Satoshi; Nojiri, Naoki; Goto, Minoru; Shibata, Taiju; Ueta, Shohei; et al.
JAERI-Tech 2004-063, 61 Pages, 2004/10
The High Temperature engineering Test Reactor (HTTR) is a graphite moderated and gas cooled reactor with the thermal power of 30MW and the reactor outlet coolant temperature of 850C/950
C. Rise-to-power test in the HTTR was performed from March 31th to May 1st in 2004 as phase 5 test up to 30MW in the high temperature test operation mode. It was confirmed that the thermal reactor power and the reactor outlet coolant temperature reached to 30MW and 950
C respectively on April 19th in the single operation mode using only the primary pressurized water cooler. The parallel loaded operation mode using the intermediate heat exchanger and the primary pressurized water cooler was performed from June 2nd and JAERI (Japan Atomic Energy Research Institute) obtained the certificate of the pre-operation test on June 24th from MEXT (Ministry of Education Culture Sports Science and Technology) after all the pre-operation tests were passed successfully in the high temperature test operation mode. Achievement of the reactor-outlet coolant temperature of 950
C is the first time in the world. It is possible to extend highly effective power generation with a high-temperature gas turbine and produce hydrogen from water with a high-temperature. This report describes the results of the high-temperature test operation of the HTTR.
Nakagawa, Shigeaki; Tachibana, Yukio; Takamatsu, Kuniyoshi; Ueta, Shohei; Hanawa, Satoshi
Nuclear Engineering and Design, 233(1-3), p.291 - 300, 2004/10
Times Cited Count:8 Percentile:48.09(Nuclear Science & Technology)The High Temperature Gas-cooled Reactor (HTGR) is particularly attractive due to its capability of producing high temperature helium gas and due to its inherent safety characteristics. The High Temperature Engineering Test Reactor (HTTR), which is the first HTGR in Japan, was successfully constructed at the Oarai Research Establishment of the Japan Atomic Energy Research Institute. The HTTR achieved full power of 30MW at a reactor outlet coolant temperature of about 850C on December 7, 2001 during the "rise-to-power tests". Two kinds of tests were carried out during the "rise-to-power tests". One is commissioning test to get operation permit by the government and another is test to confirm a performance of the reactor, heat exchanger, control system. From the test results of the "rise-to-power tests" up to 30MW, the functionality of the reactor and the cooling system were confirmed, and it was also confirmed that an operation of reactor facility can be performed safely.
Kawasaki, Kozo; Iyoku, Tatsuo; Nakazawa, Toshio; Hayashi, Hideyuki; Fujikawa, Seigo
Nihon Genshiryoku Gakkai-Shi, 46(8), P. 510, 2004/08
no abstracts in English
Enoeda, Mikio
JAERI-Conf 2004-012, 237 Pages, 2004/07
This report is the Proceedings of "the Eleventh International Workshop on Ceramic Breeder Blanket Interactions" which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors, and the Japan-US Fusion Collaboration Framework. In the workshop, information exchange was performed for designs of solid breeder blankets and test blankets in EU, Russia and Japan, recent results of irradiation tests, HICU, EXOTIC-8 and the irradiation tests by IVV-2M, modeling study on tritium release behavior of LiTiO
and other breeders, fabrication technology developments and characterization of the Li
TiO
and Li
SiO
pebbles, research on measurements and modeling of thermo-mechanical behaviors of Li
TiO
and Li
SiO
pebbles, and interfacing issues, such as, fabrication technology for blanket box structure, neutronics experiments of blanket mockups by fusion neutron source and tritium recovery system.
Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo; Inagaki, Yoshiyuki; Takeda, Tetsuaki; Hayashi, Koji; Katanishi, Shoji; Takada, Shoji; Ogawa, Masuro; Shiozawa, Shusaku
Journal of Nuclear Science and Technology, 41(3), p.385 - 392, 2004/03
Times Cited Count:19 Percentile:74.67(Nuclear Science & Technology)Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the hydrogen production system and to establish system controllability. The Mock-up test facility with a full-scale reaction tube is an approximately 1/30 scale model of the HTTR hydrogen production system and an electric heater is used as a heat source instead of a reactor. Before the mock-up test, a performance test of the test facility was carried out in the same pressure and temperature conditions as those of the HTTR hydrogen production system to investigate its performance such as hydrogen production ability, controllability and so on. It was confirmed that hydrogen was stably produced with a hot helium gas about 120Nm/h which satisfy the design value and thermal disturbance of helium gas during the start-up could be mitigated within the design value by using a steam generator.
Takeuchi, Suehiro; Nakanoya, Takamitsu; Kabumoto, Hiroshi; Yoshida, Tadashi
Nuclear Instruments and Methods in Physics Research A, 513(3), p.429 - 438, 2003/11
Times Cited Count:3 Percentile:27.37(Instruments & Instrumentation)At the JAERI Tandem accelerator, an acceleration tube replacing plan is proceeding to increase the acceleration voltage toward 20 MV. Lengthy conditioning is generally necessary for a large tube system. We had an idea to clean the tubes with high-pressure water-jet rinsing before installation. We cleaned tubes and tested them at 1 MV and 3 MV. The both results exhibited that the voltages went beyond the rated voltages and discharge activities were much less than the old records. During the test of new tubes at 3 MV, the conditioning proceeded well and an extremely stable condition was fulfilled within 24 hours. In conclusion, the cleaning was found to be a very promising way to improve high-voltage performance of the tubes in a large tube system.
Inagaki, Yoshiyuki; Hayashi, Koji; Kato, Michio; Fujisaki, Katsuo; Aita, Hideki; Takeda, Tetsuaki; Nishihara, Tetsuo; Inaba, Yoshitomo; Ohashi, Hirofumi; Katanishi, Shoji; et al.
JAERI-Tech 2003-034, 129 Pages, 2003/05
no abstracts in English
Sakaba, Nariaki; Nakagawa, Shigeaki; Takada, Eiji*; Nojiri, Naoki; Shimakawa, Satoshi; Ueta, Shohei; Sawa, Kazuhiro; Fujimoto, Nozomu; Nakazawa, Toshio; Ashikagaya, Yoshinobu; et al.
JAERI-Tech 2003-043, 59 Pages, 2003/03
HTTR plans a high temperature test operation as the fifth step of the rise-to-power tests to achieve a reactor outlet coolant temperature of 950 degrees centigrade in the 2003 fiscal year. Since HTTR is the first HTGR in Japan which uses coated particle fuel as its fuel and helium gas as its coolant, it is necessary that the plan of the high temperature test operation is based on the previous rise-to-power tests with a thermal power of 30 MW and a reactor outlet coolant temperature at 850 degrees centigrade. During the high temperature test operation, reactor characteristics, reactor performances and reactor operations are confirmed for the safety and stability of operations. This report describes the evaluation result of the safety confirmations of the fuel, the control rods and the intermediate heat exchanger for the high temperature test operation. Also, problems which were identified during the previous operations are shown with their solution methods. Additionally, there is a discussion on the contents of the high temperature test operation. As a result of this study, it is shown that the HTTR can safely achieve a thermal power of 30MW with the reactor outlet coolant temperature at 950 degrees centigrade.
Takeuchi, Suehiro; Nakanoya, Takamitsu; Kabumoto, Hiroshi; Ishizaki, Nobuhiro; Matsuda, Makoto; Tsukihashi, Yoshihiro; Kanda, Susumu; Tayama, Hidekazu; Abe, Shinichi; Yoshida, Tadashi
Dai-14-Kai Kasokuki Kagaku Kenkyu Happyokai Hokokushu, p.308 - 310, 2003/00
no abstracts in English
Nakagawa, Shigeaki; Fujimoto, Nozomu; Shimakawa, Satoshi; Nojiri, Naoki; Takeda, Takeshi; Saikusa, Akio; Ueta, Shohei; Kojima, Takao; Takada, Eiji*; Saito, Kenji; et al.
JAERI-Tech 2002-069, 87 Pages, 2002/08
Rise-to-power test in the HTTR has been performed from April 23rd to June 6th in 2000 as phase 1 test up to 10MW, from January 29th to March 1st in 2001 as phase 2 test up to 20MW in the rated operation mode and from April 14th to June 8th in 2001 as phase 3 test up to 20MW in the high temperature test operation mode. Phase 4 test to achieve the thermal reactor power of 30MW started from October 23rd in 2001. On December 7th it was confirmed that the thermal reactor power reached to 30MW and the reactor outlet coolant temperature reached to 850C. JAERI obtained the certificate of pre-operation test from MEXT because all the pre-operation tests by MEXT were passed successfully. From the test results of rise-up-power test up to 30MW, the performance of reactor and cooling system were confirmed, and it was confirmed that an operation of reactor facility could be performed safely. Some problems to be solved were found through tests. By means of solving them, the reactor operation with the reactor outlet coolant temperature of 950
C will be achievable.
Iigaki, Kazuhiko; Sakaba, Nariaki; Kawaji, Satoshi; Iyoku, Tatsuo
Transactions of 16th International Conference on Structural Mechanics in Reactor Technology (SMiRT-16) (CD-ROM), 7 Pages, 2001/08
no abstracts in English
Sawa, Kazuhiro; Sumita, Junya; Ueta, Shohei; Suzuki, Shuichi*; Tobita, Tsutomu*; Saito, Takashi; Minato, Kazuo; Koya, Toshio; Sekino, Hajime
Journal of Nuclear Science and Technology, 38(6), p.403 - 410, 2001/06
Times Cited Count:7 Percentile:48.18(Nuclear Science & Technology)no abstracts in English