Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 334

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Main outputs from the OECD/NEA ARC-F Project

Maruyama, Yu; Sugiyama, Tomoyuki*; Shimada, Asako; Lind, T.*; Bentaib, A.*; Sogalla, M.*; Pellegrini, M.*; Albright, L.*; Clayton, D.*

Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.4782 - 4795, 2023/08

Journal Articles

Numerical study of initiating phase of core disruptive accident in small sodium-cooled fast reactors with negative void reactivity

Ishida, Shinya; Fukano, Yoshitaka; Tobita, Yoshiharu; Okano, Yasushi

Journal of Nuclear Science and Technology, 13 Pages, 2023/00

Journal Articles

Effect of fuel particle size on consequences of criticality accidents in water-moderated solid fuel particle dispersion system

Fukuda, Kodai; Yamane, Yuichi

Journal of Nuclear Science and Technology, 12 Pages, 2023/00

This study aims to clarify the effect of fuel particle radius on the criticality transient behavior and the total number of fissions in water-moderated solid fuel dispersion systems. Neutronics/thermal hydraulics-coupled kinetics analysis was performed in a hypothetical fuel debris system, where small fuel particles aggregate in water and become supercritical. Results showed that the number of fissions is 10 times larger when the fuel particle radius is reduced by one order of magnitude under conditions where heat transfer, i.e. from fuel to water, is emphasized. Moreover, there is a possibility that lower reactivity could give a larger number of fissions when the fuel particle size is very small. In addition, the number of fissions may be overestimated or underestimated to an unexpected extent unless appropriate fuel particle size is set on the analysis.

Journal Articles

Reactivity estimation based on the linear equation of characteristic time profile of power in subcritical quasi-steady state

Yamane, Yuichi

Journal of Nuclear Science and Technology, 59(11), p.1331 - 1344, 2022/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The reactivity was estimated from a time profile of neutron count rate or a simulated data in a quasi-steady state after sudden change of reactivity or external neutron source strength. The estimation was based on the equation of power in subcritical quasi-steady state. The purpose of the study is to develop the method of timely reactivity estimation from complicated time profile of neutron count rate. The developed method was applied to the data simulating neutron count rate created by using one-point kinetics code, AGNES, and Poisson-distributed random noise and to the transient subcritical experiment data measured by using TRACY. The result shows that the difference of the estimated and reference value was within about 5% or less for ($$rho$$${$}$ $$>$$ -1) for simulated data and within about 7% or less for $$rho$$${$}$ $$simeq$$ -1.4 and -3.1 for the experimental data. It was also shown that the possibility of the reactivity estimation several ten seconds after the status change.

Journal Articles

Development of safety design criteria and safety design guidelines for Generation IV sodium-cooled fast reactors

Futagami, Satoshi; Kubo, Shigenobu; Sofu, T.*; Ammirabile, L.*; Gauthe, P.*

Proceedings of International Conference on Topical Issues in Nuclear Installation Safety; Strengthening Safety of Evolutionary and Innovative Reactor Designs (TIC 2022) (Internet), 10 Pages, 2022/10

Journal Articles

The OECD/NEA Working Group on the Analysis and Management of Accidents (WGAMA); Advances in codes and analyses to support safety demonstration of nuclear technology innovations

Nakamura, Hideo; Bentaib, A.*; Herranz, L. E.*; Ruyer, P.*; Mascari, F.*; Jacquemain, D.*; Adorni, M.*

Proceedings of International Conference on Topical Issues in Nuclear Installation Safety; Strengthening Safety of Evolutionary and Innovative Reactor Designs (TIC 2022) (Internet), 10 Pages, 2022/10

Journal Articles

Development of effectiveness evaluations technology of the measures for improving resilience of nuclear structures at ultra high temperature

Onoda, Yuichi; Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

Proceedings of Asian Symposium on Risk Assessment and Management 2021 (ASRAM 2021) (Internet), 11 Pages, 2021/10

The effectiveness evaluations technology of the measures for improving resilience by applying a fracture control concept under ultra-high temperature conditions has developed for prototype sodium-cooled fast reactor Monju as a model plant, and the trial evaluation has conducted using this technology in this paper. The important accident sequences to which the fracture control concept is expected to be applied under ultra-high temperature condition are identified by investigating the results of the existing researches of level-2 probabilistic risk assessment for Monju. Accident sequences categorized in protected loss of heat sink and loss of reactor level are both identified as such important accident sequences which has the potential to prevent core damage. This study has developed the technology to evaluate the effectiveness of improving resilience, where the headings which stand for success or failure of the measures to improve resilience are introduced into the event tree, the branch probability of them is set, and the effectiveness of improving resilience is expressed as the reduction of core damage frequency. As a result of the trial evaluation of the effectiveness for the measures to improve resilience, it is confirmed that core damage frequency can be reduced by applying fracture control concept. The branch probability of the measures to improve resilience proposed in this study is tentatively assigned based on the assumption. This value is expected to be quantified by the forthcoming analyses of the integrity for the reactor vessel structure at ultra-high temperature. The technology developed in this study will be applied for the evaluation of improving resilience of the next generation sodium-cooled fast reactor.

JAEA Reports

Interim activity status report of "the group for investigation of reasonable safety assurance based on graded approach" (from September, 2019 to September, 2020)

Yonomoto, Taisuke; Nakashima, Hiroshi*; Sono, Hiroki; Kishimoto, Katsumi; Izawa, Kazuhiko; Kinase, Masami; Osa, Akihiko; Ogawa, Kazuhiko; Horiguchi, Hironori; Inoi, Hiroyuki; et al.

JAEA-Review 2020-056, 51 Pages, 2021/03

JAEA-Review-2020-056.pdf:3.26MB

A group named as "The group for investigation of reasonable safety assurance based on graded approach", which consists of about 10 staffs from Sector of Nuclear Science Research, Safety and Nuclear Security Administration Department, departments for management of nuclear facility, Sector of Nuclear Safety Research and Emergency Preparedness, aims to realize effective graded approach (GA) about management of facilities and regulatory compliance of JAEA. The group started its activities in September, 2019 and has had discussions through 10 meetings and email communications. In the meetings, basic ideas of GA, status of compliance with new regulatory standards at each facility, new inspection system, etc were discussed, while individual investigation at each facility were shared among the members. This report is compiled with expectation that it will help promote rational and effective safety management based on GA by sharing contents of the activity widely inside and outside JAEA.

Journal Articles

Issues and recommendations about application of graded approach to research reactors

Yonomoto, Taisuke; Mineo, Hideaki; Murayama, Yoji; Hohara, Shinya*; Nakajima, Ken*; Nakatsuka, Toru; Uesaka, Mitsuru*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(1), p.73 - 77, 2021/01

no abstracts in English

Journal Articles

A Linear Equation of characteristic time profile of power in subcritical quasi-steady state

Yamane, Yuichi

Journal of Nuclear Science and Technology, 57(8), p.926 - 931, 2020/08

 Times Cited Count:1 Percentile:13.39(Nuclear Science & Technology)

An equation of power in subcritical quasi-steady state has been derived based on one-point kinetics equations for the purpose of utilizing it for the development of timely reactivity estimation from complicated time profile of neutron count rate. It linearly relates power, $$P$$, to a new variable $$q$$, which is a function of time differential of the power. It has been confirmed by using one-point kinetics code, AGNES, that the calculated points ($$q, P$$) are perfectly in a line described by the new equation and that points ($$q, P$$) calculated from transient subcritical experiments by using TRACY made a line with a slope indicated by the new equation.

Journal Articles

A Conceptual design study of pool-type sodium-cooled fast reactor with enhanced anti-seismic capability

Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Uchita, Masato*; Miyagawa, Takayuki*; Eto, Masao*; Suzuno, Tetsuji*; Matoba, Ichiyo*; Endo, Junji*; Watanabe, Osamu*; et al.

Mechanical Engineering Journal (Internet), 7(3), p.19-00489_1 - 19-00489_16, 2020/06

The authors are developing the design concept of pool-type sodium-cooled fast reactor (SFR) that addresses Japan's specific siting conditions such as earthquakes and meets safety design criteria (SDC) and safety design guidelines (SDGs) for Generation IV SFRs. The development of this concept will broaden not only options for reactor types in Japan but also the range and depth of international cooperation. A design concept of 1,500 MWt (650 MWe) class pool-type SFR was thought up by applying design technology obtained from the design of advanced loop-type SFR, named JSFR, equipped with safety measures that reflect results from the feasibility study on commercialized fast reactor cycle systems and fast reactor cycle technology development, improved maintainability and repairability, and lessons learned from the Fukushima Daiichi Nuclear Power Plants accident.

Journal Articles

Study on plutonium burner high temperature gas-cooled reactor in Japan; Introduction scenario, reactor safety and fabrication tests of the 3S-TRISO fuel

Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.

Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02

 Times Cited Count:1 Percentile:13.39(Nuclear Science & Technology)

The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.

Journal Articles

A Conceptual design study of pool-type sodium-cooled fast reactor with enhanced anti-seismic capability

Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Uchita, Masato*; Miyagawa, Takayuki*; Eto, Masao*; Suzuno, Tetsuji*; Matoba, Ichiyo*; Endo, Junji*; Watanabe, Osamu*; et al.

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

The authors are developing the design concept of pool-type sodium-cooled fast reactor (SFR) that addresses Japan's specific siting conditions such as earthquakes and meets safety design criteria (SDC) and safety design guidelines (SDGs) for Generation IV SFRs. The development of this concept will broaden not only options for reactor types in Japan but also the range and depth of international cooperation. A design concept of 1,500 MWt (650 MWe) class pool-type SFR was thought up by applying design technology obtained from the design of advanced loop-type SFR, named JSFR, equipped with safety measures that reflect results from the feasibility study on commercialized fast reactor cycle systems and fast reactor cycle technology development, improved maintainability and repairability, and lessons learned from the Fukushima Daiichi Nuclear Power Plants accident.

JAEA Reports

Progress report on Nuclear Safety Research Center (JFY 2015 - 2017)

Nuclear Safety Research Center, Sector of Nuclear Safety Research and Emergency Preparedness

JAEA-Review 2018-022, 201 Pages, 2019/01

JAEA-Review-2018-022.pdf:20.61MB

Nuclear Safety Research Center (NSRC), Sector of Nuclear Safety Research and Emergency Preparedness, Japan Atomic Energy Agency (JAEA) is conducting technical support to nuclear safety regulation and safety research based on the Mid-Long Term Target determined by Japanese government. This report summarizes the research structure of NSRC and the cooperative research activities with domestic and international organizations as well as the nuclear safety research activities and results in the period from JFY 2015 to 2017 on the nine research fields in NSRC; (1) severe accident analysis, (2) radiation risk analysis, (3) safety of nuclear fuels in light water reactors (LWRs), (4) thermohydraulic behavior under severe accident in LWRs, (5) materials degradation and structural integrity, (6) safety of nuclear fuel cycle facilities, (7) safety management on criticality, (8) safety of radioactive waste management, and (9) nuclear safeguards.

Journal Articles

Development of the severe accident evaluation method on second coolant leakages from the PHTS in a loop-type sodium-cooled fast reactor

Yamada, Fumiaki; Imaizumi, Yuya; Nishimura, Masahiro; Fukano, Yoshitaka; Arikawa, Mitsuhiro*

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 10 Pages, 2017/07

The loss-of-reactor-level (LORL) is one of the loss-of-heat-removal-system (LOHRS) of beyond-DBA (BDBA) severe accident. An evaluation method for the LORL which is caused by the coolant leakage in two positions of the primary heat transport system (PHTS) was developed for prototype JSFR which is loop-type sodium-cooled fast reactor. The secondary leakage in cold standby which occurred in different loop from that of the first leakage in rated power operation can lead LORL by excessive declining of the sodium level. Therefore, the sodium level behavior in RV was studied in a representative accident sequence by considering the sodium pumping up into RV, siphon-breaking to stop pumping out from RV and maintain the sodium level, and calculation programs for the transient sodium level in RV. The representative sequence with lowest sodium level was selected by considering combinations of possible leakage positions. As a result of the evaluation considering the countermeasures above, it was revealed that the LOHRS can be prevented by maintaining the sodium level for the operation of decay heat removal system, even in the leakages in two positions of PHTS which corresponds to BDBA.

Journal Articles

Progress of design and related researches of sodium-cooled fast reactor in Japan

Kamide, Hideki; Sakamoto, Yoshihiko; Kubo, Shigenobu; Oki, Shigeo; Ohshima, Hiroyuki; Kamiyama, Kenji

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Next Generation Nuclear Systems for Sustainable Development (FR-17) (USB Flash Drive), 10 Pages, 2017/06

Development of a sodium-cooled fast reactor has been implemented in Japan from the viewpoint of severe accident countermeasures in order to strengthen safety of a fast reactor since the Great East Japan Earthquake. This paper describes the progress of design study and research and development related to safety enhancement and the severe accident countermeasures. For the purpose of strengthening of decay heat removal function, several researches have been carried out on the decay heat removal in a core disruptive accident (CDA), diversity and applicability of decay heat removal systems, and thermal hydraulic evaluation methods. In order to elucidate the behavior of molten fuel during CDA, some in-pile and out-of-pile tests has been performed by international collaboration including basic experiments. Core design was also improved from the viewpoint of preventing the occurrence of severe accident.

Journal Articles

Recent activities of the safety and operation project of the sodium-cooled fast reactor in the Generation IV International Forum

Vasile, A.*; Ren, L.*; Fanning, T.*; Tsige-Tamirat, H.*; Yamano, Hidemasa; Kang, S.-H.*; Ashurko, I.*

Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Next Generation Nuclear Systems for Sustainable Development (FR-17) (USB Flash Drive), 15 Pages, 2017/06

The tasks in the Safety and Operation (SO) topics are categorized into the following three work packages (WP): WP-SO-1 Methods, Models and codes is devoted to the development of tools for the evaluation of safety, WP-SO-2 Experimental Programs and Operational Experiences includes the operation, maintenance and testing experiences in experimental facilities and SFRs (e.g., Monju, Phenix, BN-600 and CEFR), and WP-SO-3 Studies of Innovative Design and Safety Systems relates to safety technologies for GEN-IV reactors such as active and passive safety systems and other specific design features. In this paper, recent activities in the SO project are described.

Journal Articles

Activities of the safety and operation project for the international research and development of the sodium-cooled fast reactor in the Generation IV international forum

Sakai, Takaaki; Ren, L.*; Tsige-Tamirat, H.*; Vasile, A.*; Kang, S.-H.*; Ashurko, Y.*; Fanning, T.*

Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 7 Pages, 2016/06

Journal Articles

Numerical simulations of gas-liquid-particle three-phase flows using a hybrid method

Guo, L.*; Morita, Koji*; Tobita, Yoshiharu

Journal of Nuclear Science and Technology, 53(2), p.271 - 280, 2016/02

 Times Cited Count:6 Percentile:56.37(Nuclear Science & Technology)

Journal Articles

Chapter 11, Generation IV concepts: Japan

Kamide, Hideki; Ohshima, Hiroyuki; Sakai, Takaaki; Morishita, Masaki

Handbook of Generation IV Nuclear Reactors, First Edition, p.283 - 307, 2016/00

Handbook of Generation IV Nuclear Reactors is comprehensive resource on the research and advances in generation IV nuclear reactor concepts and the first edition is issued in 2016. The authors wrote the chapter 11: Generation IV nuclear reactor concepts: Japan, where developments activities on sodium cooled fast reactor in Japan are shown. Especially, concept of Japan sodium-cooled fast reactor (JSFR) is explained on the points of innovative technologies and safety enhancements after the TEPCO Fukushima Daiichi Nuclear Power Plant accident.

334 (Records 1-20 displayed on this page)