Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sano, Kyohei; Tameta, Yuito; Akuzawa, Tadashi; Kato, Soma; Takano, Yugo*; Akiyama, Kazuki
JAEA-Technology 2024-018, 68 Pages, 2025/02
High Active Solid Waste Storage Facility (HASWS) at the Tokai Reprocessing Plant (TRP) is a facility for storing highly radioactive solid waste generated from the reprocessing operation. Wet cells in HASWS store hull cans that contain fuel cladding tubes (hull) and fuel end pieces remained after the spent nuclear fuel shearing and dissolving, as well as used filters and contaminated equipment. Dry cells in HASWS store analytical waste containers that contain waste jugs and the other waste generated from analytical operation of samples in TRP. Since HASWS does not have waste recovery equipment from the cells, it is considered that recovery equipment to be installed. In the wet cells, methods of recovery wet-stored waste are being considered that utilize a ROV, which has been used in decommissioning in the UK, and a lifter, which is used in the marine industry to float and transport items sinking to the bottom of the sea. To confirm the feasibility of the recovery method that combines the functions of the ROV and the lifter, tests for removing waste were conducted in steps that came closer to the real environment: a "unit test" to confirm the functions required of each of the ROV and the lifter, a "combination test" to combine the ROV and the lifter to move waste underwater, and a "comprehensive test" to retrieve waste in an environment simulating the hull storage facility. Through this test, the ROV and the lifter were able to perform a series of tasks required to recovery waste - cutting the wires attached to the waste, attaching a lifter to the waste, moving the waste to under the opening, and attaching the recovery device to the moved waste - in series, confirming the feasibility of the method for recovery wet-stored waste using the ROV and the lifter.
Motome, Yuiko; Agake, Toshiki; Yanagisawa, Hiroshi
JAEA-Technology 2024-015, 30 Pages, 2025/01
The tables for calibration of control rods were verified, which is used positive period method and improved rod drop method of periodic inspection at Nuclear Safety Research Reactor (NSRR). Those tables are "DOUBLING TIME-REACTIVITY" and "DECAY OF NEUTRON FLUX AFTER INSTANTANEOUS REDUCTION OF REACTIVITY". They are prepared around 1975. Since those tables do not clearly express source of values and records of data used in calculations, the authors verified those tables again. For the verification, the tables were reproduced as follows. For the positive period method, the relationship between the period and reactivity was analytically evaluated by using the inhour equation with NSRR's parameters. For the improved rod drop method, the ratios of neutron flux after the rod drop with parameters of negative reactivities was calculated using the EUREKA- 2 code. As a result, the values described in the tables well agree with those by the present evaluation because it is confirmed that standard deviations of the differences in the value by between the present evaluation and the tables are less than 0.035%. For this reason, it is verified that these tables are valid in the practical use for NSRR operations.
Ito, Takashi; Higemoto, Wataru; Koda, Akihiro*; Nakamura, Jumpei*; Shimomura, Koichiro*
Interactions (Internet), 245(1), p.25_1 - 25_7, 2024/12
Tokunaga, Sho; Horiguchi, Hironori; Nakamura, Takemi
JAEA-Technology 2023-001, 37 Pages, 2023/05
The cold neutron source (CNS) of the research reactor JRR-3 converts thermal neutrons generated in the reactor into low-energy cold neutrons by moderating them with liquid hydrogen stored in the moderator cell. Cold neutrons generated by the CNS are transported to experimental instruments using neutron conduits, and are used for many studies of physical properties, mainly in life science, polymer science, environmental science, etc. Improvement of cold neutron intensity is essential to maintain competitiveness with the world's research reactors in neutron science, and we are developing a new CNS that incorporates new knowledge. The current moderator cell for the CNS of JRR-3 is a stainless-steel container which is a canteen bottle type, and the cold neutron intensity can be improved by changing the material and shape. Therefore, the basic specifications of the new moderator cell were changed to aluminum alloy which has a smaller neutron absorption cross section, and the shape was optimized using a Monte Carlo code MCNP. Since these changes in specifications will result in changes in heat generation and heat transfer conditions, the CNS of JRR-3 was re-evaluated in terms of self-regulating characteristic, heat transport limits, heat resistance and pressure resistance, etc., to confirm its feasibility in thermal-hydraulic design. This report summarizes the results of the thermal-hydraulic design evaluation of the new moderator cell.
Kurisaka, Kenichi; Nishino, Hiroyuki; Yamano, Hidemasa
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 8 Pages, 2023/05
The objective of this study is to develop an effectiveness evaluation methodology of the measures for improving resilience of nuclear structures against excessive earthquake by applying the failure mitigation technology. This study regarded those measures for improving resilience of important structures, systems, and components for safety to enlarge their seismic safety margin. To evaluate effectiveness of those measures, seismic core damage frequency (CDF) is selected as an index. Reduction of CDF as an effectiveness index is quantified by applying seismic PRA technology. Accident sequences leading to loss of decay heat removal are significant contributor to seismic CDF of sodium-cooled fast reactors (SFRs), and those sequences result in core damage via ultra-high temperature condition. This study improved the methodology to evaluate not only the measures against shaking due to excessive earthquake but also the measures at the ultra-high temperature condition. To examine applicability of the improved methodology, a trial calculation was implemented with some assumptions for a loop-type SFR. Within the assumption, the measures for improving resilience were significantly effective for decreasing CDF in excessive earthquake up to several times of a design basis ground motion. Through the applicability examination, the methodology for the effectiveness evaluation was developed successfully.
Onoda, Yuichi; Kurisaka, Kenichi; Yamano, Hidemasa
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05
The objective of this study is to develop an effectiveness evaluation methodology of the measures for improving resilience of nuclear structures at ultra-high temperature by using the failure mitigation technology. At the beginning, to identify the accident sequences having the potential to improve resilience, the characteristics of a next-generation loop-type sodium-cooled fast reactor (SFR) in Japan has been investigated by analyzing the event tree of level-1 and level-2 probabilistic risk assessment. As a result, event sequences of loss of heat removal systems (LOHRS) are identified. The effectiveness of the measures for improving resilience is evaluated by quantifying the reduction rate of core damage frequency before and after the introduction of the measures for improving resilience for all the accident sequences leading to LOHRS. To examine applicability of the developed methodology, a trial evaluation has conducted for a next-generation loop-type SFR in Japan. Through the applicability examined, the method for the effectiveness evaluation was developed successfully. The refinement of the conditional success probability of the measures for improving resilience is the future work.
Kakiuchi, Kazuo; Amaya, Masaki; Udagawa, Yutaka
Journal of Nuclear Materials, 573, p.154110_1 - 154110_7, 2023/01
Times Cited Count:2 Percentile:29.47(Materials Science, Multidisciplinary)Yakushev, A.*; Lens, L.*; Dllmann, Ch. E.*; Khuyagbaatar, J.*; J
ger, E.*; Krier, J.*; Runke, J.*; Albers, H. M.*; Asai, Masato; Block, M.*; et al.
Frontiers in Chemistry (Internet), 10, p.976635_1 - 976635_11, 2022/08
Times Cited Count:19 Percentile:80.70(Chemistry, Multidisciplinary)Flerovium (Fl, element 114) is the heaviest element chemically studied so far. The first chemical experiment on Fl suggested that Fl is a noble-gas-like element, while the second studies suggested that Fl has a volatile-metal-like character. To obtain more reliable conclusion, we performed further experimental studies on Fl adsorption behavior on Si oxide and gold surfaces. The present results suggest that Fl is highly volatile and less reactive than the volatile metal, Hg, but has higher reactivity than the noble gas, Rn.
Kakiuchi, Kazuo; Amaya, Masaki; Udagawa, Yutaka
Annals of Nuclear Energy, 171, p.109004_1 - 109004_9, 2022/06
Times Cited Count:7 Percentile:74.40(Nuclear Science & Technology)Nancekievill, M.*; Espinosa, J.*; Watson, S.*; Lennox, B.*; Jones, A.*; Joyce, M. J.*; Katakura, Junichi*; Okumura, Keisuke; Kamada, So*; Kato, Michio*; et al.
Sensors (Internet), 19(20), p.4602_1 - 4602_16, 2019/10
Times Cited Count:9 Percentile:45.12(Chemistry, Analytical)In order to contribute to fuel debris search at the Fukushima Daiichi Nuclear Power Station, we developed a system to search for submerged fuel debris by mounting a sonar on the remotely operated vehicle (ROV). The system can obtain 3D images of submerged fuel debris in real time by using the positioning system, depth sensor, and collected sonar data. As a demonstration test, a simulated fuel debris was installed at the bottom of the water tank facility at the Naraha Center for Remote Control Technology Development, and a 3D image was successfully obtained.
Amaya, Masaki; Kakiuchi, Kazuo; Mihara, Takeshi
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.1048 - 1056, 2019/09
Kamada, So*; Kato, Michio*; Nishimura, Kazuya*; Nancekievill, M.*; Watson, S.*; Lennox, B.*; Jones, A.*; Joyce, M. J.*; Okumura, Keisuke; Katakura, Junichi*
Progress in Nuclear Science and Technology (Internet), 6, p.199 - 202, 2019/01
As a technology development to investigate the distribution of submerged fuel debris in the primary containment vessel (PCV) of the Fukushima Daiichi Nuclear Power Station, we are conducting development experiments of sonar system to be mounted in a compact ROV. The experiments were conducted in two types of water tanks with different depths, simulating the PCV, using sonar with different sizes, ultrasonic frequencies, and beam scanning method, and simulated fuel debris. As a result, we characterized the shape discrimination performance of the simulated debris, and the noise due to multi-path in narrow closed space.
Lens, L.*; Yakushev, A.*; Dllmann, Ch. E.*; Asai, Masato; Ballof, J.*; Block, M.*; David, H. M.*; Despotopulos, J.*; Di Nitto, A.*; Eberhardt, K.*; et al.
Radiochimica Acta, 106(12), p.949 - 962, 2018/12
Times Cited Count:11 Percentile:68.03(Chemistry, Inorganic & Nuclear)Online gas-solid adsorption studies with single atom quantities of Hg, Tl, and Pb on SiO and Au surfaces were carried out using short-lived radioisotopes with half-lives in the range of 4-49 s. This is a model study to measure adsorption enthalpies of superheavy elements Cn, Nh, and Fl. The short-lived isotopes were produced and separated by the gas-filled recoil separator TASCA at GSI. The products were stopped in He gas, and flushed into gas chromatography columns made of Si detectors whose surfaces were covered by SiO
or Au. The short-lived Tl and Pb were successfully measured by the Si detectors with the SiO
surface at room temperature. On the other hand, the Hg did not adsorb on the SiO
surface, but adsorbed on the Au surface. The results demonstrated that the adsorption properties of short-lived Hg, Tl, and Pb could be studied with this setup, and that this method is applicable to the experiment for Cn, Nh, and Fl.
Amaya, Masaki; Udagawa, Yutaka; Narukawa, Takafumi; Mihara, Takeshi; Taniguchi, Yoshinori
Proceedings of Annual Topical Meeting on Reactor Fuel Performance (TopFuel 2018) (Internet), 10 Pages, 2018/10
Ueki, Tadamasa; Niwa, Masakazu
JAEA-Data/Code 2018-005, 94 Pages, 2018/08
Mountain development has an influence on long-term changes of uplift, erosion, and groundwater flow related to change in hydraulic gradient. Provenance analysis is one of promising geological methods to understand origin and formation process of mountains. Case study in the Tono area, central Japan has been done for research and development of individual technique to estimate a provenance. In this report, petrological descriptions by meso- and microscopic observations and elemental distributions using scanning X-ray analytical microscope of basement rocks (silicic igneous rocks) from the study area were compiled.
Itoi, Tatsuya*; Iwaki, Chikako*; Onuki, Akira*; Kito, Kazuaki*; Nakamura, Hideo; Nishida, Akemi; Nishi, Yoshihisa*
Nihon Genshiryoku Gakkai-Shi ATOMO, 60(4), p.221 - 225, 2018/04
no abstracts in English
Li, B.; Kawakita, Yukinobu; Liu, Y.*; Wang, M.*; Matsuura, Masato*; Shibata, Kaoru; Kawamura, Seiko; Yamada, Takeshi*; Lin, S.*; Nakajima, Kenji; et al.
Nature Communications (Internet), 8, p.16086_1 - 16086_9, 2017/06
Times Cited Count:83 Percentile:90.21(Multidisciplinary Sciences)Saito, Kimiaki; Nagai, Haruyasu; Kinase, Sakae; Takemiya, Hiroshi
Nihon Genshiryoku Gakkai-Shi ATOMO, 59(6), p.40 - 44, 2017/06
no abstracts in English
Nancekievill, M.*; Jones, A. R.*; Joyce, M. J.*; Lennox, B.*; Watson, S.*; Katakura, Junichi*; Okumura, Keisuke; Kamada, So*; Kato, Michio*; Nishimura, Kazuya*
Proceedings of 5th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA 2017) (USB Flash Drive), 6 Pages, 2017/06
We are developping a submersible ROV system, coupled with radiation detectors aimed at mapping the interior of the reactors at the Fukushima Daiichi Nuclear Power Station. To map the -ray intensity environment a cerium bromide (CeBr
) inorganic scintillator detector sensitive to
-rays has been incorporated into the ROV to measure
-ray intensity and identify radioactive isotopes. The ROV is a cylindrical shape with a diameter of about 150 mm, and it have two end caps of five pumps each allowing control of the ROV in 5 degree of freedom. It is possible to directly replace the CeBr
detector with a single crystal chemical vapour deposition (CVD) neutron detector with a
Li convertor foil that is capable of mapping the thermal neutron flux.
Arai, Kenji*; Umezawa, Shigemitsu*; Oikawa, Hirohide*; Onuki, Akira*; Nakamura, Hideo; Nishi, Yoshihisa*; Fujii, Tadashi*
Nihon Genshiryoku Gakkai-Shi ATOMO, 58(3), p.161 - 166, 2016/03
no abstracts in English