Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tokunaga, Sho; Horiguchi, Hironori; Nakamura, Takemi
JAEA-Technology 2023-001, 37 Pages, 2023/05
The cold neutron source (CNS) of the research reactor JRR-3 converts thermal neutrons generated in the reactor into low-energy cold neutrons by moderating them with liquid hydrogen stored in the moderator cell. Cold neutrons generated by the CNS are transported to experimental instruments using neutron conduits, and are used for many studies of physical properties, mainly in life science, polymer science, environmental science, etc. Improvement of cold neutron intensity is essential to maintain competitiveness with the world's research reactors in neutron science, and we are developing a new CNS that incorporates new knowledge. The current moderator cell for the CNS of JRR-3 is a stainless-steel container which is a canteen bottle type, and the cold neutron intensity can be improved by changing the material and shape. Therefore, the basic specifications of the new moderator cell were changed to aluminum alloy which has a smaller neutron absorption cross section, and the shape was optimized using a Monte Carlo code MCNP. Since these changes in specifications will result in changes in heat generation and heat transfer conditions, the CNS of JRR-3 was re-evaluated in terms of self-regulating characteristic, heat transport limits, heat resistance and pressure resistance, etc., to confirm its feasibility in thermal-hydraulic design. This report summarizes the results of the thermal-hydraulic design evaluation of the new moderator cell.
Kakiuchi, Kazuo; Amaya, Masaki; Udagawa, Yutaka
Journal of Nuclear Materials, 573, p.154110_1 - 154110_7, 2023/01
Times Cited Count:0 Percentile:0.04(Materials Science, Multidisciplinary)Yakushev, A.*; Lens, L.*; Dllmann, Ch. E.*; Khuyagbaatar, J.*; J
ger, E.*; Krier, J.*; Runke, J.*; Albers, H. M.*; Asai, Masato; Block, M.*; et al.
Frontiers in Chemistry (Internet), 10, p.976635_1 - 976635_11, 2022/08
Times Cited Count:6 Percentile:89.68(Chemistry, Multidisciplinary)Flerovium (Fl, element 114) is the heaviest element chemically studied so far. The first chemical experiment on Fl suggested that Fl is a noble-gas-like element, while the second studies suggested that Fl has a volatile-metal-like character. To obtain more reliable conclusion, we performed further experimental studies on Fl adsorption behavior on Si oxide and gold surfaces. The present results suggest that Fl is highly volatile and less reactive than the volatile metal, Hg, but has higher reactivity than the noble gas, Rn.
Kakiuchi, Kazuo; Amaya, Masaki; Udagawa, Yutaka
Annals of Nuclear Energy, 171, p.109004_1 - 109004_9, 2022/06
Times Cited Count:3 Percentile:80.5(Nuclear Science & Technology)Nancekievill, M.*; Espinosa, J.*; Watson, S.*; Lennox, B.*; Jones, A.*; Joyce, M. J.*; Katakura, Junichi*; Okumura, Keisuke; Kamada, So*; Kato, Michio*; et al.
Sensors (Internet), 19(20), p.4602_1 - 4602_16, 2019/10
Times Cited Count:6 Percentile:43.97(Chemistry, Analytical)In order to contribute to fuel debris search at the Fukushima Daiichi Nuclear Power Station, we developed a system to search for submerged fuel debris by mounting a sonar on the remotely operated vehicle (ROV). The system can obtain 3D images of submerged fuel debris in real time by using the positioning system, depth sensor, and collected sonar data. As a demonstration test, a simulated fuel debris was installed at the bottom of the water tank facility at the Naraha Center for Remote Control Technology Development, and a 3D image was successfully obtained.
Amaya, Masaki; Kakiuchi, Kazuo; Mihara, Takeshi
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.1048 - 1056, 2019/09
Kamada, So*; Kato, Michio*; Nishimura, Kazuya*; Nancekievill, M.*; Watson, S.*; Lennox, B.*; Jones, A.*; Joyce, M. J.*; Okumura, Keisuke; Katakura, Junichi*
Progress in Nuclear Science and Technology (Internet), 6, p.199 - 202, 2019/01
As a technology development to investigate the distribution of submerged fuel debris in the primary containment vessel (PCV) of the Fukushima Daiichi Nuclear Power Station, we are conducting development experiments of sonar system to be mounted in a compact ROV. The experiments were conducted in two types of water tanks with different depths, simulating the PCV, using sonar with different sizes, ultrasonic frequencies, and beam scanning method, and simulated fuel debris. As a result, we characterized the shape discrimination performance of the simulated debris, and the noise due to multi-path in narrow closed space.
Lens, L.*; Yakushev, A.*; Dllmann, Ch. E.*; Asai, Masato; Ballof, J.*; Block, M.*; David, H. M.*; Despotopulos, J.*; Di Nitto, A.*; Eberhardt, K.*; et al.
Radiochimica Acta, 106(12), p.949 - 962, 2018/12
Times Cited Count:6 Percentile:58.02(Chemistry, Inorganic & Nuclear)Online gas-solid adsorption studies with single atom quantities of Hg, Tl, and Pb on SiO and Au surfaces were carried out using short-lived radioisotopes with half-lives in the range of 4-49 s. This is a model study to measure adsorption enthalpies of superheavy elements Cn, Nh, and Fl. The short-lived isotopes were produced and separated by the gas-filled recoil separator TASCA at GSI. The products were stopped in He gas, and flushed into gas chromatography columns made of Si detectors whose surfaces were covered by SiO
or Au. The short-lived Tl and Pb were successfully measured by the Si detectors with the SiO
surface at room temperature. On the other hand, the Hg did not adsorb on the SiO
surface, but adsorbed on the Au surface. The results demonstrated that the adsorption properties of short-lived Hg, Tl, and Pb could be studied with this setup, and that this method is applicable to the experiment for Cn, Nh, and Fl.
Amaya, Masaki; Udagawa, Yutaka; Narukawa, Takafumi; Mihara, Takeshi; Taniguchi, Yoshinori
Proceedings of Annual Topical Meeting on Reactor Fuel Performance (TopFuel 2018) (Internet), 10 Pages, 2018/10
Ueki, Tadamasa; Niwa, Masakazu
JAEA-Data/Code 2018-005, 94 Pages, 2018/08
Mountain development has an influence on long-term changes of uplift, erosion, and groundwater flow related to change in hydraulic gradient. Provenance analysis is one of promising geological methods to understand origin and formation process of mountains. Case study in the Tono area, central Japan has been done for research and development of individual technique to estimate a provenance. In this report, petrological descriptions by meso- and microscopic observations and elemental distributions using scanning X-ray analytical microscope of basement rocks (silicic igneous rocks) from the study area were compiled.
Itoi, Tatsuya*; Iwaki, Chikako*; Onuki, Akira*; Kito, Kazuaki*; Nakamura, Hideo; Nishida, Akemi; Nishi, Yoshihisa*
Nihon Genshiryoku Gakkai-Shi ATOMO, 60(4), p.221 - 225, 2018/04
no abstracts in English
Li, B.; Kawakita, Yukinobu; Liu, Y.*; Wang, M.*; Matsuura, Masato*; Shibata, Kaoru; Kawamura, Seiko; Yamada, Takeshi*; Lin, S.*; Nakajima, Kenji; et al.
Nature Communications (Internet), 8, p.16086_1 - 16086_9, 2017/06
Times Cited Count:73 Percentile:91.9(Multidisciplinary Sciences)Saito, Kimiaki; Nagai, Haruyasu; Kinase, Sakae; Takemiya, Hiroshi
Nihon Genshiryoku Gakkai-Shi ATOMO, 59(6), p.40 - 44, 2017/06
no abstracts in English
Nancekievill, M.*; Jones, A. R.*; Joyce, M. J.*; Lennox, B.*; Watson, S.*; Katakura, Junichi*; Okumura, Keisuke; Kamada, So*; Kato, Michio*; Nishimura, Kazuya*
Proceedings of 5th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA 2017) (USB Flash Drive), 6 Pages, 2017/06
We are developping a submersible ROV system, coupled with radiation detectors aimed at mapping the interior of the reactors at the Fukushima Daiichi Nuclear Power Station. To map the -ray intensity environment a cerium bromide (CeBr
) inorganic scintillator detector sensitive to
-rays has been incorporated into the ROV to measure
-ray intensity and identify radioactive isotopes. The ROV is a cylindrical shape with a diameter of about 150 mm, and it have two end caps of five pumps each allowing control of the ROV in 5 degree of freedom. It is possible to directly replace the CeBr
detector with a single crystal chemical vapour deposition (CVD) neutron detector with a
Li convertor foil that is capable of mapping the thermal neutron flux.
Arai, Kenji*; Umezawa, Shigemitsu*; Oikawa, Hirohide*; Onuki, Akira*; Nakamura, Hideo; Nishi, Yoshihisa*; Fujii, Tadashi*
Nihon Genshiryoku Gakkai-Shi ATOMO, 58(3), p.161 - 166, 2016/03
no abstracts in English
Tanaka, Kosuke; Sato, Isamu; Hirosawa, Takashi; Kurosaki, Ken*; Muta, Hiroaki*; Yamanaka, Shinsuke*
Journal of Nuclear Science and Technology, 52(10), p.1285 - 1289, 2015/10
Times Cited Count:2 Percentile:18.84(Nuclear Science & Technology)Polycrystalline specimens of americium-containing barium plutonate have been prepared by mixing the appropriate amounts of (PuAm
)O
and BaCO
powders followed by reacting and sintering at 1600 K under the flowing gas atmosphere of dry-air. The sintered specimens had a single phase of orthorhombic perovskite structure and were crack-free. The elastic moduli were determined from the longitudinal and shear sound velocities. The Debye temperature was also determined from the sound velocities and lattice parameter measurements. The thermal conductivity was calculated from the measured density at room temperature, literature values of heat capacity, and thermal diffusivity measured by laser flash method in vacuum. The thermal conductivity of americium-containing barium plutonate was roughly independent of the temperature and was almost the same magnitude as that of BaPuO
and BaUO
.
Nordlund, K.*; Sand, A. E.*; Granberg, F.*; Zinkle, S. J.*; Stoller, R.*; Averback, R. S.*; Suzudo, Tomoaki; Malerba, L.*; Banhart, F.*; Weber, W. J.*; et al.
NEA/NSC/DOC(2015)9 (Internet), 86 Pages, 2015/00
Within this report, we review the current understanding of primary radiation damage from neutrons, ions and electrons with emphasis on the range of validity of the dpa concept in all main classes of materials, and in particular discuss known shortcomings. We recognise that the current NRT-dpa standard is fully valid in the sense of a scaled radiation exposure measure, as it is essentially proportional to the radiation energy deposited per volume. As such, it is highly recommended to be used in reporting neutron damage results to enable comparison between different nuclear reactor environments and ion irradiations. However, in the sense of a measure of damage production the NRT-dpa value has several well-known problems. We discuss this matter and propose an improved dpa definition.
Review Group on the Structure of the Spent Nuclear Fuel Transportation Casks for
JAERI-Review 2005-023, 133 Pages, 2005/07
The Japan Atomic Energy Research Institute (JAERI) constructed two stainless steel transportation casks, JRC-80Y-20T, for spent nuclear fuels of research reactors and had utilized them for transportation since 1981. A modification of the design was applied to the USA for transportation of silicide fuels. Additional analyses employing the impact analysis code LS-DYNA that was often used for safety analysis were submitted by the JAERI to the USA to show integrity of the packages; the casks were still not approved, because inelastic deformation was occurred on the surface of the lid touching to the body. To resolve this problem on design approval of transportation casks, a review group was formed at the end of this June. The group examined the impact analyses by reviewing the input data and performing the sensitivity analyses. As the drop impact analyses were found to be practically reasonable, it was concluded that the approval of the USA for the transportation casks could not be obtained just by revising the analyses; therefore, remodelling the casks is required.
Fujii, Yasuhiko
Koatsuryoku No Kagaku To Gijutsu, 14(2), p.113 - 118, 2004/05
no abstracts in English
Li, J.; Kishimoto, Yasuaki
Physics of Plasmas, 11(4), p.1493 - 1510, 2004/04
Times Cited Count:58 Percentile:86.04(Physics, Fluids & Plasmas)The electron temperature gradient (ETG) driven turbulence in tokamak core plasmas is numerically investigated based on three-dimensional gyrofluid model with adiabatic ion response. Attentions are focused on the zonal flow dynamics in ETG fluctuations and the resultant electron heat transport. A high electron energy confinement mode is found in the weak magnetic shear regime, which is closely relevant with self-organization behavior of turbulence through the enhanced zonal flow dynamics rather than the weak shear stabilization of ETG fluctuations. It is demonstrated that the weak shear is favorable for the enhancement of zonal flows in ETG turbulence.