Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 80

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Long-term changes in the chemical, microstructural, and transport properties of a low-pH cement shotcrete during operation of the Horonobe Underground Research Laboratory, Japan

Mochizuki, Akihito; Matsui, Hiroya; Nakayama, Masashi; Sakamoto, Ryo*; Shibata, Masahito*; Motoshima, Takayuki*; Jo, Mayumi*

Case Studies in Construction Materials, 22, p.e04648_1 - e04648_20, 2025/07

The properties of low-pH cement used in the geological disposal of radioactive waste may change through atmospheric carbonation and degradation caused by groundwater during the long-term operation of a repository. In this study, we investigated the effects of atmospheric carbonation and groundwater contact on the chemical, microstructural, and transport properties of shotcrete made from low-pH, high-fly-ash silica-fume cement (HFSC) over a period of 16 years in an underground research laboratory. In both carbonated and degraded zones of the HFSC shotcrete, capillary porosity increased for pores of $$<$$300 nm in diameter, and the total porosity was higher than in undegraded zones. These changes in porosity may be associated with the decalcification of calcium-silicate-hydrate and decomposition of ettringite. Such changes were minor in altered zones of OPC shotcrete, indicating that HFSC shotcrete is less resistant to atmospheric carbonation and groundwater leaching under the studied conditions. However, the hydraulic conductivity in HFSC was low enough to fulfill the specific functional requirements of low-pH cements for geological disposal.

Journal Articles

New filter concept for removal of fine particle generated in high level radioactive solution

Takahatake, Yoko; Watanabe, So; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki

Progress in Nuclear Science and Technology (Internet), 7, p.195 - 198, 2025/05

Extraction chromatgraphy technology for trivalent minor actinide (MA(III) ; Am(III) and Cm(III)) recovery from the solution generated by an extraction process in reprocessing of spent nuclear fuel has been developed. A fine particle is generated in the solution. The fine particle must be removed before MA recovery operation, because that leads clogging of the extraction chlomatography column. In order to prevent clogging the column, filtration system utilizing porous silica beads packed column has been designed. In this study, a fine particle trapping system was developed and particle removal performance of the system was experimentally evaluated using alumina particles as simulated fine particle. Column experiments revealed that the fine particle with the particle size from 0.12 to 15 $$mu$$m is cause of clogging of the filtration column. Since simulated fine particles were trapped on filtration experiments, a filtration system using the porous silica beads column is practical,

Journal Articles

Synthesis of BaSiH$$_6$$ hydridosilicate at high pressures; A Bridge to BaSiH$$_8$$ polyhydride

Beyer, D. C.*; Spektor, K.*; Vekilova, O. Y.*; Grins, J.*; Barros Brant Carvalho, P. H.*; Leinbach, L. J.*; Sannemo-Targama, M.*; Bhat, S.*; Baran, V.*; Etter, M.*; et al.

ACS Omega (Internet), 10(15), p.15029 - 15035, 2025/04

 Times Cited Count:0

Hydridosilicates featuring SiH$$_6$$ octahedral moieties represent a rather new class of compounds with potential properties relating to hydrogen storage and hydride ion conductivity. Here, we report on the new representative BaSiH$$_6$$ obtained from reacting the Zintl phase hydride BaSiH$$_{sim 1.8}$$ with H$$_2$$ fluid at pressures above 4 GPa and subsequent decompression to ambient pressure. It consists of complex SiH$$_{6}^{2-}$$ ions, which are octahedrally coordinated by Ba$$^{2+}$$ counterions. The arrangement of Ba and Si atoms deviates only slightly from an ideal fcc NaCl structure. IR and Raman spectroscopy showed SiH$$_{6}^{2-}$$ bending and stretching modes in the ranges 800-1200 and 1400-1800 cm$$^{-1}$$, respectively. BaSiH$$_6$$ is thermally stable up to 95$$^circ$$C above which decomposition into BaH$$_2$$ and Si takes place. DFT calculations indicated a direct band gap of 2.5 eV. The discovery of BaSiH$$_6$$ consolidates the compound class of hydridosilicates, accessible from hydrogenations of silicides at gigapascal pressures ($$textless$$10 GPa). The structural properties of BaSiH$$_6$$ suggest that it presents an intermediate (or precursor) for further hydrogenation at considerably higher pressures to the predicted superconducting polyhydride BaSiH$$_8$$.

JAEA Reports

Contribution to risk reduction in decommissioning works by the elucidation of basic property of radioactive microparticles (Contract Research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Ibaraki University*

JAEA-Review 2023-021, 112 Pages, 2024/02

JAEA-Review-2023-021.pdf:7.1MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Contribution to Risk Reduction in Decommissioning Works by the Elucidation of Basic Property of Radioactive Microparticles" conducted from FY2018 to FY2021 (this contract was extended to FY2021). The present study aims to understand the basic properties (size, chemical composition, isotopic composition - including concentration of $$alpha$$-emitters, electrostatic properties, and optical properties, etc.) of fine particles composed of silicate with insoluble properties which contain regions of highly concentrated radioactive cesium (Cs) released to the environment by the accident at the Fukushima Daiichi Nuclear Power Station of TEPCO in 2011 March.

Journal Articles

Kinetic analysis of mass transfer of Eu(III) in extractant-impregnated polymer-layered silica particle in multiple-ion distribution system

Miyagawa, Akihisa*; Hayashi, Naoki*; Iwamoto, Hibiki*; Arai, Tsuyoshi*; Nagatomo, Shigenori*; Miyazaki, Yasunori; Hasegawa, Kenta; Sano, Yuichi; Nakatani, Kiyoharu*

Analytical Sciences, 40(2), p.347 - 352, 2024/02

 Times Cited Count:1 Percentile:12.79(Chemistry, Analytical)

The Eu(III) distribution mechanism in single extractant-impregnated polymer-layered silica particle in a complex solution containing multiple lanthanide ions was investigated using fluorescence microspectroscopy. The rate-determining step was the reaction of Eu(III) with the two extractant molecules. The obtained mechanism and rate constants agreed with those of the single-ion distribution system, in which Eu(III) was distributed to the particles in the Eu(III) solution.

Journal Articles

Impact of interatomic structural characteristics of aluminosilicate hydrate on the mechanical properties of metakaolin-based geopolymer

Kim, G.*; Cho, S.-M.*; Im, S.*; Suh, H.*; Morooka, Satoshi; Shobu, Takahisa; Kanematsu, Manabu*; Machida, Akihiko*; Bae, S.*

Construction and Building Materials, 411, p.134529_1 - 134529_18, 2024/01

 Times Cited Count:8 Percentile:67.39(Construction & Building Technology)

Journal Articles

Characteristic microstructural phase evolution and the compressive strength development mechanisms of tricalcium silicate pastes under various initial carbonation curing environments

Cho, S.*; Suh, H.*; Im, S.*; Kim, G.*; Kanematsu, Manabu*; Morooka, Satoshi; Machida, Akihiko*; Shobu, Takahisa; Bae, S.*

Construction and Building Materials, 409, p.133866_1 - 133866_20, 2023/12

 Times Cited Count:13 Percentile:79.63(Construction & Building Technology)

Journal Articles

Eu(III) transfer in single $$N,N,N',N'$$-tetraoctyldiglycolamide-impregnated polymer-coated silica particle using fluorescence microspectroscopy; Transfer mechanism and effect of polymer crosslinking degree

Miyagawa, Akihisa*; Takahashi, Takumi*; Kuzure, Yoshiaki*; Iwamoto, Hibiki*; Arai, Tsuyoshi*; Nagatomo, Shigenori*; Watanabe, So; Sano, Yuichi; Nakatani, Kiyoharu*

Analytical Sciences, 39(11), p.1929 - 1936, 2023/11

 Times Cited Count:1 Percentile:12.79(Chemistry, Analytical)

In this study, we revealed the Eu(III) distribution in a single diglycolamide-derivative extractant (TODGA)-impregnated polymer-coated silica particle. The reaction of Eu(III) with two TODGA molecules in the polymer layer was the rate-limiting process, as evidenced by the absence of any correlation between the rate constants (k$$_{1}$$ and k$$_{-1}$$) and concentrations of Eu(III) and HNO$$_{3}$$.

Journal Articles

Competitive distribution of europium and samarium based on reaction rate-limiting process in nitrilotriacetamide extractant-impregnated polymer-coated silica particles

Miyagawa, Akihisa*; Hayashi, Naoki*; Iwamoto, Hibiki*; Arai, Tsuyoshi*; Nagatomo, Shigenori*; Miyazaki, Yasunori; Hasegawa, Kenta; Sano, Yuichi; Nakatani, Kiyoharu*

Bulletin of the Chemical Society of Japan, 96(9), p.1019 - 1025, 2023/09

 Times Cited Count:3 Percentile:35.92(Chemistry, Multidisciplinary)

In the present study, we have elucidated the mass transfer mechanism of Eu(III) and Sm(III) in the solution with these ions in single nitrilotriacetamide (NTA) extractant-impregnated polymer-coated silica particle. The rate-limiting process of mass transfer was the reaction process of ions with NTA molecules, in which the NO$$_{3}$$$$^{-}$$ ions were not involved, which was consistent with that obtained in single ion distribution system.

Journal Articles

Kinetic mass transfer behavior of Eu(III) in nitrilotriacetamide-impregnated polymer-coated silica particles

Miyagawa, Akihisa*; Hayashi, Naoki*; Kuzure, Yoshiaki*; Takahashi, Takumi*; Iwamoto, Hibiki*; Arai, Tsuyoshi*; Nagatomo, Shigenori*; Miyazaki, Yasunori; Hasegawa, Kenta; Sano, Yuichi; et al.

Bulletin of the Chemical Society of Japan, 96(7), p.671 - 676, 2023/07

 Times Cited Count:6 Percentile:60.17(Chemistry, Multidisciplinary)

We investigated the distribution mechanism of Eu(III) in a single polymer-coated silica particle including nitrilotriacetamide (NTA) extractants known as HONTA and TOD2EHNTA. The present study provides a valuable approach for the evaluation and enhancement of the functionality of "single extractant-impregnated polymer-coated silica particle".

Journal Articles

Insight on the mechanical properties of hierarchical porous calcium-silicate-hydrate pastes according to the Ca/Si molar ratio using ${it in situ}$ synchrotron X-ray scattering and nanoindentation test

Im, S.*; Jee, H.*; Suh, H.*; Kanematsu, Manabu*; Morooka, Satoshi; Choe, H.*; Nishio, Yuhei*; Machida, Akihiko*; Kim, J.*; Lim, S.*; et al.

Construction and Building Materials, 365, p.130034_1 - 130034_18, 2023/02

 Times Cited Count:16 Percentile:76.14(Construction & Building Technology)

Journal Articles

Evolution of porewater in a Neogene sedimentary formation in the Horonobe area, Hokkaido, Japan: Modeling of burial diagenesis

Miyakawa, Kazuya; Kashiwaya, Koki*; Komura, Yuto*; Nakata, Kotaro*

Geochemical Journal, 57(5), p.155 - 175, 2023/00

 Times Cited Count:2 Percentile:34.50(Geochemistry & Geophysics)

In the thick marine sediments, groundwater altered from seawater during the burial diagenesis may exist. Such altered ancient seawater will be called fossil seawater. In such a field, groundwater flow is considered extremely slow because it is not affected by the seepage of meteoric water even after the uplift. During diagenesis, dehydration from silicates causes changes such as a decrease in the salinity of the porewater. However, dehydration reactions alone cannot quantitatively explain water chemistry changes. In this study, we developed an analytical model that considers the dehydration reaction from silicates during the burial process and the upward migration of porewater due to compaction and examined the possible evolution of porewater chemistry. The results showed that the water chemistry, which was strongly influenced by the dehydration reaction from opal-A to quartz and from smectite, was similar to the observations from boring surveys. The results suggest that the fossil seawater formed during the diagenesis may have been preserved since the uplift and strongly supports the slow groundwater flow in the area where the fossil seawater exists.

Journal Articles

Effect of magnesium silicate hydrate (M-S-H) formation on the local atomic arrangements and mechanical properties of calcium silicate hydrate (C-S-H); In situ X-ray scattering study

Kim, G.*; Im, S.*; Jee, H.*; Suh, H.*; Cho, S.*; Kanematsu, Manabu*; Morooka, Satoshi; Koyama, Taku*; Nishio, Yuhei*; Machida, Akihiko*; et al.

Cement and Concrete Research, 159, p.106869_1 - 106869_17, 2022/09

 Times Cited Count:26 Percentile:87.39(Construction & Building Technology)

Journal Articles

Phase-field mobility for crystal growth rates in undercooled silicates, SiO$$_2$$ and GeO$$_2$$ liquids

Kawaguchi, Munemichi; Uno, Masayoshi*

Journal of Crystal Growth, 585, p.126590_1 - 126590_7, 2022/05

Phase-field mobility, $$L$$, and crystal growth rates in crystallization of 11 oxides or mixed oxides in undercooled silicates, SiO$$_2$$ and GeO$$_2$$ liquids were calculated with a simple phase-field model (PFM), and material dependence of the $$L$$ was discussed. Ratios between experimental crystal growth rates and the PFM simulation with $$L=1$$ were confirmed to be proportional to a power of $$frac{TDelta T}{eta}$$ on the solid/liquid interface process during the crystal growth in a log-log plot. We determined that parameters, $$A$$ and $$B$$, of the $$L=A(frac{k_{B}TDelta T}{6pi^{2}lambda^{3}eta T_{m} })^{B}$$ were $$A=6.7times 10^{-6}$$ to $$2.6$$m$$^4$$J$$^{-1}$$s$$^{-1}$$ and $$B=0.65$$ to $$1.3$$, which were unique for the materials. It was confirmed that our PFM simulation with the determined $$L$$ reproduced quantitively the experimental crystal growth rates. The $$A$$ has a proportional relationship with the diffusion coefficient of a cation molar mass average per unit an oxygen molar mass at $$T_{m}$$ in a log-log graph. The $$B$$ depends on the sum of the cation molar mass per the oxygen molar mass, $$frac{Sigma_{i}M_{i}}{M_{O}}$$, in a compound. In $$frac{Sigma_{i}M_{i}}{M_{O}}leq 25$$, the $$B$$ decreases with the cation molar mass increasing. The assumed cause is that the B represents the degree of the temperature dependence of the $$L$$. Since the cation molar mass is proportional to an inertial resistance of the cation transfer, the $$B$$ decreases with inverse of the cation molar mass. In crystallization of the silicates of heavy cation in $$frac{Sigma_{i}M_{i}}{M_{O}}geq 25$$, the $$B$$ saturates at approximately 0.67, which leads to $$T_{p}approx 0.9T_{m}$$.

Journal Articles

Temperature effects on local structure, phase transformation, and mechanical properties of calcium silicate hydrates

Im, S.*; Jee, H.*; Suh, H.*; Kanematsu, Manabu*; Morooka, Satoshi; Koyama, Taku*; Nishio, Yuhei*; Machida, Akihiko*; Kim, J.*; Bae, S.*

Journal of the American Ceramic Society, 104(9), p.4803 - 4818, 2021/09

 Times Cited Count:25 Percentile:82.05(Materials Science, Ceramics)

Journal Articles

Development of a membrane reactor with a closed-end silica membrane for nuclear-heated hydrogen production

Myagmarjav, O.; Tanaka, Nobuyuki; Nomura, Mikihiro*; Noguchi, Hiroki; Imai, Yoshiyuki; Kamiji, Yu; Kubo, Shinji; Takegami, Hiroaki

Progress in Nuclear Energy, 137, p.103772_1 - 103772_7, 2021/07

 Times Cited Count:8 Percentile:68.12(Nuclear Science & Technology)

Journal Articles

Synthesis of a Si-Al gel as a starting material of aluminosilicate solids

Sato, Junya; Shiota, Kenji*; Takaoka, Masaki*

Zairyo, 70(5), p.406 - 411, 2021/05

An aluminosilicate solid is an inorganic material that has the property of immobilizing heavy metals or radionuclides in the matrix. In this study, aluminosilicates with a Si/Al molar ratio of 0.5 was synthesized from a chemical reagent in order to produce aluminosilicate solids with a low Si/Al molar ratio, which were expected to improve the immobilization of heavy metals and radionuclides contained in the matrix. The synthesized Si-Al gel with a Si/Al molar ratio of 0.5 had little impurity content and was in an amorphous phase. In addition, the compressive strength of the aluminosilicate solid produced by the synthesized Si-Al gel showed a 5 MPa or more, confirming that it can be used as a raw material for aluminosilicate solids. The aluminosilicate solid with a Si/Al molar ratio of 1.25 had a dense surface structure from the result of BSE images and had the highest compressive strength among all samples.

JAEA Reports

Contribution to risk reduction in decommissioning works by the elucidation of basic property of radioactive microparticles (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Ibaraki University*

JAEA-Review 2020-033, 84 Pages, 2021/01

JAEA-Review-2020-033.pdf:4.9MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Contribution to Risk Reduction in Decommissioning Works by the Elucidation of Basic Property of Radioactive Microparticles" conducted in FY2019.

Journal Articles

Phase-field model for crystallization in alkali disilicate glasses; Li$$_2$$O-2SiO$$_2$$, Na$$_2$$O-2SiO$$_2$$ and K$$_2$$O-2SiO$$_2$$

Kawaguchi, Munemichi; Uno, Masayoshi*

Journal of the Ceramic Society of Japan, 128(10), p.832 - 838, 2020/10

 Times Cited Count:3 Percentile:12.91(Materials Science, Ceramics)

This study developed phase-field method (PFM) technique in oxide melt system by using a new mobility coefficient ($$L$$). The crystal growth rates ($$v_0$$) obtained by the PFM calculation with the constant $$L$$ were comparable to the thermodynamic driving force in normal growth model. The temperature dependence of the $$L$$ was determined from the experimental crystal growth rates and the $$v_0$$. Using the determined $$L$$, the crystal growth rates ($$v$$) in alkali disilicate glasses, Li$$_2$$O-2SiO$$_2$$, Na$$_2$$O-2SiO$$_2$$ and K$$_2$$O-2SiO$$_2$$ were simulated. The temperature dependence of the $$v$$ was qualitatively and quantitatively so similar that the PFM calculation results demonstrated the validity of the $$L$$. Especially, the $$v$$ obtained by the PFM calculation appeared the rapid increase just below the thermodynamic melting point ($$T_{rm m}$$) and the steep peak at around $$T_{rm m}$$-100 K. Additionally, as the temperature decreased, the $$v$$ apparently approached zero ms$$^-1$$, which is limited by the $$L$$ representing the interface jump process. Furthermore, we implemented the PFM calculation for the variation of the parameter $$B$$ in the $$L$$. As the $$B$$ increased from zero to two, the peak of the $$v$$ became steeper and the peak temperature of the $$v$$ shifted to the high temperature side. The parameters $$A$$ and $$B$$ in the $$L$$ increased exponentially and decreased linearly as the atomic number of the alkali metal increased due to the ionic potential, respectively. This calculation revealed that the $$A$$ and $$B$$ in the $$L$$ were close and reasonable for each other.

Journal Articles

Adsorption behavior of cesium on hybrid microcapsules in spent fuel solution

Onishi, Takashi; Koyama, Shinichi; Mimura, Hitoshi*

Nihon Ion Kokan Gakkai-Shi, 31(3), p.43 - 49, 2020/10

80 (Records 1-20 displayed on this page)