Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ando, Masaki; Saito, Kimiaki
JAEA-Technology 2021-032, 66 Pages, 2022/03
Since the occurrence of the accident at the TEPCO Fukushima Daiichi Nuclear Power Station, the Japan Atomic Energy Agency (JAEA) has been conducting a series of car-borne survey over a wide area in the eastern part of Japan using the monitoring system KURAMAII. In this report, outline of the car-borne surveys are summarized and the following characteristics of the temporal changes in each prefecture and region were investigated using the measured data obtained from 2012 to 2019; 1) Average and maximum values for each prefecture for the six years from 2014 to 2019, 2) Average values for each prefecture from 2012 to 2019, 3) Average values for each evacuation order area category, regional category, and northern Soso-area municipality in Fukushima Prefecture from 2012 to 2019, and 4) Average and maximum values for each municipality in each prefecture for four times (at almost two-year intervals) of the measurement results from 2012 to 2018.
Ando, Masaki; Matsuda, Norihiro; Saito, Kimiaki
Nihon Genshiryoku Gakkai Wabun Rombunshi, 20(1), p.34 - 39, 2021/03
We measured count rates and air dose rates at 11 measurement points where the influence of the Fukushima Dai-ichi Nuclear Power Plant accident could be ignored to obtain parameters for a background equation applying to KURAMA-II loaded with the high sensitivity CsI(Tl) detector, C12137-01. It was found that the sensitivity of KURAMA-II (C12137-01) was about 10 times or more for background measurement, compared with KURAMA-II loaded with the standard type CsI(Tl) detector, C12137. A background equation for the energy range of 1400-2000 keV was determined as, y (Sv/h)=0.062 x (cps). We evaluated background air dose rates using KURAMA-II (C12137-01) for 71 municipalities and compared them with the previous study using KURAMA-II (C12137). Evaluated background air dose rates in this study were almost equal to those in the previous study. We confirmed that the background equation evaluated in this study was applicable for the KURAMA-II (C12137-01).
Yoshimura, Kazuya; Saegusa, Jun; Sanada, Yukihisa
Scientific Reports (Internet), 10(1), p.3859_1 - 3859_9, 2020/03
Times Cited Count:16 Percentile:56.37(Multidisciplinary Sciences)Ando, Masaki; Mikami, Satoshi; Tsuda, Shuichi; Yoshida, Tadayoshi; Matsuda, Norihiro; Saito, Kimiaki
Journal of Environmental Radioactivity, 192, p.385 - 398, 2018/12
Times Cited Count:15 Percentile:43.59(Environmental Sciences)Car-borne surveys using KURAMA systems have been conducted over a wide area in eastern Japan since 2011. The measurement data collected until 2016 was analyzed, and decreasing trend of the dose rates in regions within 80 km of Fukushima Dai-ichi Nuclear Power Plant were examined. The averaged dose rates tended to decrease considerably with respect to the physical decay of radiocaesium, and the ecological half-lives of the fast and slow decay components were estimated. The decrease of the dose rate in the forest was slower than its decrease in other regions, and the decrease of the dose rate in urban area was the fastest. The decrease in the dose rates obtained via the car-borne survey was larger than that obtained on flat ground with few disturbances using survey meters approximately 1.5 y after the accident; hereafter, the decrease in the dose rates obtained via the car-borne survey was same as the latter measurement.
Ando, Masaki; Yamamoto, Hideaki*; Kanno, Takashi*; Saito, Kimiaki
Journal of Environmental Radioactivity, 190-191, p.111 - 121, 2018/10
Times Cited Count:19 Percentile:52.31(Environmental Sciences)Ambient dose equivalent rates in various environments related to human lives were measured by walk surveys using the KURAMA-II systems from 2013 to 2016 around the Fukushima Dai-ichi Nuclear Power Plant. The dose rate of the locations where the walk survey was performed decreased to about 38% of its initial value in the 42 months, which was beyond that attributable to the physical decay. The air dose rates decreased depending on the level of the evacuation areas, and the decrease was slightly larger in populated areas where humans are active. The comparison of walk survey data with car-borne survey data indicated that the air dose rate varies largely even within a 100 m square area. The dose rates measured by the walk surveys were estimated to be medial of those along roads and those of undisturbed flat ground. The air dose rates measured by the walk surveys decreased quickly compared with the air dose rate from the flat ground measurement.
Tanaka, Hiroshi; Sakoda, Akihiro; Ando, Masaki; Ishimori, Yuu
Hoken Butsuri, 51(2), p.107 - 114, 2016/06
Ambient dose rates are continuously monitored in Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency. The present study discussed the variations in ambient dose rates, observed from April 2014 to March 2015, due to snowfall as well as rainfall. It is much snowy as one of climatic features in this area. Rain or snow was sampled for a certain period in the day of interest (17 cases in total), and then the concentration of radon progeny was measured. With the measured data, the variation in ambient dose rate was calculated considering the accumulation of the radon progeny on the ground. As a whole, this calculation was found to reasonably reproduce the time trends of observed dose rates, except for four cases. Based on the backward trajectory analysis, it was explained that the discrepancy in two cases out of the four was induced by changes of radon progeny concentration in precipitation around sampling period. It was suggested that the other two cases were caused by the run-off of rain from the ground surface.
Liu, X.; Machida, Masahiko; Saito, Kimiaki; Tanimura, Naoki*
no journal, ,
Ecological half-life has been widely used to describe the long-term decrease of ambient dose rates in addition to radioactive decay. In the present work, we introduce a new, robust, and efficient numerical method to extract space dependent ecological half-lives from car-borne survey data. Numerical results indicate complexed ecological half-life profiles, which are originated from their spatial patterns.
Honda, Fumiya*; Kinase, Sakae
no journal, ,