Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Possible oxygen reduction reactions for graphene edges from first principles

Ikeda, Takashi; Hou, Z.*; Chai, G.-L.*; Terakura, Kiyoyuki*

Journal of Physical Chemistry C, 118(31), p.17616 - 17625, 2014/08

 Times Cited Count:41 Percentile:81.59(Chemistry, Physical)

N-doped carbon-based nanomaterials are attracting a great interest as promising Pt-free electrode catalysts for polymer electrolyte fuel cells (PEFCs). In this computational study, we demonstrate that N-doped graphene edges can exhibit enhanced catalytic activity toward oxygen reduction reactions by controlling their electron-donating and -withdrawing abilities, and basicity, resulting in higher selectivity of 4e$$^{-}$$ reduction via inner and outer sphere electron transfer at edges in acidic conditions, respectively. Our simulations also show that 2e$$^{-}$$ reduction occurs selectively in the presence of pyridinic N next to carbonyl O at zigzag edges. This study thus rationalizes the roles of doped N in graphenelike materials for oxygen reduction reactions.

Journal Articles

Interplay between oxidized monovacancy and nitrogen doping in graphene

Hou, Z.*; Shu, D.-J.*; Chai, G.-L.*; Ikeda, Takashi; Terakura, Kiyoyuki*

Journal of Physical Chemistry C, 118(34), p.19795 - 19805, 2014/08

 Times Cited Count:10 Percentile:38.87(Chemistry, Physical)

In most of the N-doped graphene which attracts strong attention in the context of precious-metal free catalysts and nanoelectronics, the oxygen content is generally higher than or at least comparable to the nitrogen content. We perform density functional theory calculations to study the interplay of oxidized monovacancies and the nitrogen doping, motivated by the fact that MV is more frequently observed and more chemically active than divacancy and Stone-Wales defect. We determine the phase diagrams of un-doped and nitrogen-doped oxidized MVs as a function of temperature and partial pressure of O$$_{2}$$ and H$$_{2}$$ gases. The modification of the electronic structure of MV by oxidation and N doping is studied. Our results show that the ether group is a common component in stable configurations of oxidized MVs. Most of the stable configurations of oxidized MVs do not induce any carriers.

Journal Articles

NMR chemical shifts of $$^{15}$$N-bearing graphene

Wang, X.*; Hou, Z.*; Ikeda, Takashi; Terakura, Kiyoyuki*

Journal of Physical Chemistry C, 118(25), p.13929 - 13935, 2014/06

 Times Cited Count:8 Percentile:32.69(Chemistry, Physical)

The NMR chemical shifts of possible N-containing moieties at edges and defects of graphene are investigated by using the first-principles method. Our computations show that pyridine-like and graphite-like N are rather easily identifiable using $$^{15}$$N NMR technique, in agreement with experiment. On the other hand, pyridinium-like N is hardly distinguished from pyrrole-like one because these $$^{15}$$N nuclei give nearly overlapping signals. However, our simulations suggest that $$^{1}$$H NMR is useful to discriminate between them; The NMR chemical shift of $$^{1}$$H directly bonded with pyridinium-like and pyrrole-like N is estimated as 0.8 and 10.8 ppm, respectively. The $$^{15}$$N NMR signals for various moieties at edges we considered are found to be similar to the corresponding ones at defects except for pyridine-like nitrogens. Conversely, the $$^{15}$$N NMR chemical shifts are altered sensitively by the degree of aggregation of pyridine-like $$^{15}$$N atoms both along armchair edges and at defect sites.

Oral presentation

Growth mechanism of graphene on Cu(111) substrates studied by in-situ photoelectron spectroscopy

Ogawa, Shuichi*; Yamada, Takatoshi*; Ishizuka, Shinji*; Yoshigoe, Akitaka; Hasegawa, Masataka*; Teraoka, Yuden; Takakuwa, Yuji*

no journal, , 

4 (Records 1-4 displayed on this page)
  • 1