検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Atomic position and the chemical state of an active Sn dopant for Sn-doped $$beta$$-Ga$$_{2}$$O$$_{3}$$(001)

Tsai, Y. H.*; 小畠 雅明; 福田 竜生; 谷田 肇; 小林 徹; 山下 良之*

Applied Physics Letters, 124(11), p.112105_1 - 112105_5, 2024/03

 被引用回数:1 パーセンタイル:0.00(Physics, Applied)

Recently, gallium oxide (Ga$$_{2}$$O$$_{3}$$) has attracted much attention as an ultra-wide bandgap semiconductor with a bandgap of about 5 eV. In order to control device properties, it is important to clarify the chemical state of dopants and doping sites. X-ray absorption near edge structure (XANES) and hard X-ray photoemission spectroscopy were used to investigate the dopant sites and chemical states of Sn in Sn-doped $$beta$$-Ga$$_{2}$$O$$_{3}$$(001) samples. The results show that the chemical state of the Sn dopant is the Sn$$^{4+}$$ oxidation state and that the bond lengths around the Sn dopant atoms are longer due to the relaxation effect after Sn dopant insertion. Comparison of experimental and simulated XANES spectra indicates that the octahedral Ga substitution site in $$beta$$-Ga$$_{2}$$O$$_{3}$$(001) is the active site of the Sn dopant.

論文

Hard X-ray photoelectron spectroscopy study for transport behavior of CsI in heating test simulating a BWR severe accident condition; Chemical effects of boron vapors

岡根 哲夫; 小畠 雅明; 佐藤 勇*; 小林 啓介*; 逢坂 正彦; 山上 浩志

Nuclear Engineering and Design, 297, p.251 - 256, 2016/02

 被引用回数:2 パーセンタイル:18.37(Nuclear Science & Technology)

Transport behavior of CsI in the heating test, which simulated a BWR severe accident, was investigated by hard X-ray photoelectron spectroscopy (HAXPES) with an emphasis on the chemical effect of boron vapors. CsI deposited on metal tube at temperatures ranging from 150$$^{circ}$$C to 750$$^{circ}$$C was reacted with vapor/aerosol B$$_2$$O$$_3$$, and the chemical form of reaction products on the sample surface was examined from the HAXPES spectra of core levels, e.g., Ni 2p, Cs 3d and I 3d levels, and valence band. For the samples at $$sim$$300$$^{circ}$$C, while the chemical form of major product on the sample surface without an exposure to B$$_2$$O$$_3$$ was suggested to be CsI from the HAXPES spectra, an intensity ratio of Cs/I was dramatically reduced at the sample surface after the reaction with B$$_2$$O$$_3$$. The results suggest the possibility of significant decomposition of deposited CsI induced by the chemical reaction with B$$_2$$O$$_3$$ at specific temperatures.

2 件中 1件目~2件目を表示
  • 1