Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yokoyama, Keisuke; Watanabe, Masashi; Tokoro, Daishiro*; Sugimoto, Masatoshi*; Morimoto, Kyoichi; Kato, Masato; Hino, Tetsushi*
Nuclear Materials and Energy (Internet), 31, p.101156_1 - 101156_7, 2022/06
In current nuclear fuel cycle systems, to reduce the amount of high-level radioactive waste, minor actinides (MAs) bearing MOX fuel is one option for burning MAs using fast reactor. However, the effects of Am content in fuel on thermal conductivity are unclear because there are no experimental data on thermal conductivity of high Am bearing MOX fuel. In this study, The thermal conductivities of near stoichiometric (UPu
Am
)O
solid solutions(z = 0.05, 0.10, and 0.15) have been measured between room temperature (RT) and 1473 K. The thermal conductivities decreased with increasing Am content and satisfied the classical phonon transport model ((A+BT)
) up to about 1473 K. A values increased linearly with increasing Am content because the change in ionic radius affects the conduction of the phonon due to the solid solution in U
and Am
. B values were independent of Am content.
Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi
Journal of Nuclear Science and Technology, 11 Pages, 2022/04
The present study selected Np among radioactive nuclides and aimed to measure the thermal-neutron capture cross-section for
Np in a well-thermalized neutron field by an activation method. A
Np standard solution was used for irradiation samples. A thermal-neutron flux at an irradiation position was measured with neutron flux monitors:
Sc,
Co,
Mo,
Ta and
Au. The
Np sample and flux monitors were irradiated together for 30 minutes in the graphite thermal column equipped with the Kyoto University Research Reactor. The similar irradiation was carried out twice. After the irradiations, the
Np samples were quantified using 312-keV gamma ray emitted from
Pa in a radiation equilibrium with
Np. The reaction rates of
Np were obtained from gamma-ray peak net counts given by
Np, and then the thermal-neutron capture cross-section of
Np was found to be 173.8
4.4 barn by averaging the results obtained by the two irradiations. The present result was in agreement with the reported data given by a time-of-flight method within the limit of uncertainty.
Hashimoto, Shunsuke*; Nakajima, Kenji; Kikuchi, Tatsuya*; Kamazawa, Kazuya*; Shibata, Kaoru; Yamada, Takeshi*
Journal of Molecular Liquids, 342, p.117580_1 - 117580_8, 2021/11
Times Cited Count:0Quasi-elastic neutron scattering (QENS) and pulsed-field-gradient nuclear magnetic resonance (PFGNMR) analyses of a nanofluid composed of silicon dioxide (SiO) nanoparticles and a base fluid of ethylene glycol aqueous solution were performed. The aim was to elucidate the mechanism increase in the thermal conductivity of the nanofluid above its theoretical value. The obtained experimental results indicate that SiO
particles may decrease the self-diffusion coefficient of the liquid molecules in the ethylene glycol aqueous solution because of their highly restricted motion around these nanoparticles. At a constant temperature, the thermal conductivity increases as the self-diffusion coefficient of the liquid molecules decreases in the SiO
nanofluids.
Ina, Takuya*; Idomura, Yasuhiro; Imamura, Toshiyuki*; Yamashita, Susumu; Onodera, Naoyuki
Proceedings of 12th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems ScalA21) (Internet) , 8 Pages, 2021/11
A new mixed-precision preconditioner based on the iterative refinement (IR) method is developed for preconditioned conjugate gradient (P-CG) and multigrid preconditioned conjugate gradient (MGCG) solvers in a multi-phase thermal-hydraulic CFD code JUPITER. In the IR preconditioner, all data is stored in FP16 to reduce memory access, while all computation is performed in FP32. The hybrid FP16/32 implementation keeps the similar convergence property as FP32, while the computational performance is close to FP16. The developed solvers are optimized on Fugaku (A64FX), and applied to ill-conditioned matrices in JUPITER. The P-CG and MGCG solvers with the new IR preconditioner show excellent strong scaling up to 8,000 nodes, and at 8,000 nodes, they are respectively accelerated up to 4.86 and 2.39
from the conventional ones on Oakforest-PACS (KNL).
Kato, Takuma*; Nagaoka, Mika; Guo, H.*; Fujita, Hiroki; Aida, Taku*; Smith, R. L. Jr.*
Environmental Science and Pollution Research, 28(39), p.55725 - 55735, 2021/10
Times Cited Count:0 Percentile:0(Environmental Sciences)In this work, hydrothermal leaching was applied to simulated soils (clay minerals vermiculite, montmorillonite, kaolinite) and actual soils (Terunuma, Japan) to generate organic acids with the objective to develop an additive-free screening method for determination of Sr in soil. Stable strontium (SrCl) was adsorbed onto soils for study and ten organic acids were evaluated for leaching Sr from simulated soils under hydrothermal conditions (120 to 200
C) at concentrations up to 0.3 M. For strontium-adsorbed vermiculite (Sr-V), 0.1 M citric acid was found to be effective for leaching Sr at 150
C and 1 h treatment time. Based on these results, the formation of organic acids from organic matter in Terunuma soil was studied. Hydrothermal treatment of Terunuma soil produced a maximum amount of organic acids at 200
C and 0.5 h reaction time. To confirm the possibility for leaching of Sr from Terunuma soil, strontium-adsorbed Terunuma soil (Sr-S) was studied. For Sr-S, hydrothermal treatment at 200
C for 0.5 h reaction time allowed 40% of the Sr to be leached at room temperature, thus demonstrating an additive-free method for screening of Sr in soil. The additive-free hydrothermal leaching method avoids calcination of solids in the first step of chemical analysis and has application to both routine monitoring of metals in soils and to emergency situations.
Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Kurihara, Akikazu; Tanaka, Masaaki
Hozengaku, 20(3), p.89 - 96, 2021/10
Hot sodium from the fuel assembly can mix with cold sodium from the control rod (CR) channel and the blanket assemblies at the bottom plate of the Upper Internal Structure (UIS) of Advanced-SFR. Temperature fluctuation due to mixing of the fluids at different temperature between the core outlet and cold channel may cause high cycle thermal fatigue on the structure around the bottom of UIS. A water experiment using a 1/3 scale 60 degree sector model simulating the upper plenum of the Advanced-SFR has been conducted to examine countermeasures for the significant temperature fluctuation generated around the bottom of UIS. We focused on the temperature fluctuations near the primary and backup control rod channels, and studied the countermeasure structure to mitigate the temperature fluctuation through temperature distribution and flow velocity distribution measurements. As a result, effectiveness of the countermeasure to mitigate the temperature fluctuation intensity was confirmed.
Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Kurihara, Akikazu; Tanaka, Masaaki
Hozengaku, 20(3), p.97 - 101, 2021/10
Focusing on the thermal striping phenomena that occurs at a bottom of the internal structure of an advanced sodium-cooled fast reactor (Advanced-SFR) that has been designed by the Japan Atomic Energy Agency, a water experiment using a 1/3 scale 60 degree sector model simulating the upper plenum of the Advanced-SFR has been conducted to examine countermeasures for the significant temperature fluctuation generated around the bottom of Upper Internal Structure (UIS). In the previous paper, we reported the effect of measures to mitigate temperature fluctuations around the control rod channels. In this paper, the same test section was used, and a water experiment was conducted to obtain the characteristics of temperature fluctuations around the radial blanket fuel assembly. And the shape of the Core Instrumentation Support Plate (CIP) was modified, and it was confirmed that it was highly effective in alleviating temperature fluctuations around the radial blanket fuel assembly.
Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi
Journal of Nuclear Science and Technology, 58(10), p.1061 - 1070, 2021/10
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)In a well-thermalized neutron field, it is principally possible to drive a thermal-neutron capture cross-section without considering an epithermal neutron component. This was demonstrated by a neutron activation method using the graphite thermal column (TC-Pn) of the Kyoto University Research Reactor. First, in order to confirm that the graphite thermal column was a well-thermalized neutron field, neutron irradiation was performed with neutron flux monitors: Au,
Co,
Sc,
Cu, and
Mo. The TC-Pn was confirmed to be extremely thermalized on the basis of Westcott's convention, because the thermal-neutron flux component took a constant value regardless of the sensitivity of each flux monitor to epithermal neutrons. Next, as a demonstration, the thermal-neutron capture cross section of
Ta(n,
)
Ta reaction was measured using the graphite thermal column, and then derived to be 20.5
0.4 barn, which supported the evaluated value of 20.4
0.3 barn. The
Ta nuclide could be useful as a flux monitor that complements the sensitivity between
Au and
Mo monitors.
Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*
JAEA-Research 2021-005, 25 Pages, 2021/08
An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an empirical correlation equation of Ru mass transfer coefficient across the vapor-liquid surface, which can be useful for quantitative simulation of Ru mitigating behavior, has been obtained from data analyses of small-scale experiments conducted to clarify gaseous Ru migrating behavior under steam-condensing condition. A simulation study has been also carried out with a hypothetical typical facility building successfully to demonstrate the feasibility of quantitative estimation of amount of Ru migrating in the facility using the obtained correlation equation implemented in SCHERN computer code which simulates chemical behaviors of nitrogen oxide based on the condition also simulated thermal-hydraulic computer code.
Uwaba, Tomoyuki; Nemoto, Junichi*; Ito, Masahiro*; Ishitani, Ikuo*; Doda, Norihiro; Tanaka, Masaaki; Otsuka, Satoshi
Nuclear Technology, 207(8), p.1280 - 1289, 2021/08
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Computer codes for irradiation behavior analysis of a fuel pin and a fuel pin bundle and for coolant thermal hydraulics analysis were coupled into an integrated code system. In the system, each code provides data required by other codes and the analyzed results are shared among them. The system allows for the synthesizing of analyses of thermal, chemical and mechanical behaviors in a fuel subassembly under irradiation. A test analysis was made for a fuel subassembly containing a mixed oxide fuel pin bundle irradiated in a fast reactor. The results of the analysis were presented with transverse cross-sectional images of the fuel subassembly and three-dimensional images of a fuel pin and fuel pin bundle models. For detailed evaluation, various irradiation behaviors of all fuel pins in the subassembly were analyzed and correlated with irradiation conditions.
Maruyama, Yu; Yoshida, Kazuo
Nihon Genshiryoku Gakkai-Shi ATOMO, 63(7), p.517 - 522, 2021/07
no abstracts in English
Kawaguchi, Munemichi
Journal of Physical Chemistry C, 125(22), p.11813 - 11819, 2021/06
Times Cited Count:0 Percentile:0(Chemistry, Physical)Isothermal and constant heating thermogravimetry-differential thermal analysis (TG-DTA) and Fourier transform infrared spectrometer (FTIR) measurements have been performed for pre- and post-fired sodium hydride (NaH) in the temperature range of 500-700 K, respectively. Temperature dependence of NaH thermal decomposition rates obtained by the isothermal TGs showed an inflection point at around 620 K, which was caused by two kinds of hydrogen states (rapid diffusing and immobile hydrogen). In the FTIR spectra for the NaH and sodium (Na), the specific signals were observed at around 873.4, 1010.4, 1049.5 and 1125.7 cm, and the integrated values of FTIR signals for post-fired NaH at below 550K and at above 698 K were comparable to those for pre-fired NaH and Na, respectively. Those for post-fired NaH at 602-667 K were the intermediate values of the pre-fired NaH and Na, which denoted that the Na-Na bonds haven't grown sufficiently and the hydrogen coexisted in metallic Na. In order to predict the practical kinetics of NaH thermal decomposition reaction, we suggested the simple kinetics model which assumed two kinds of rapidly diffusing and immobile hydrogen states. The simulation results revealed the inflection point in temperature dependence of the thermal decomposition rates accordingly because the transition from immobile hydrogen to rapid diffusing hydrogen crosses over at around 620 K.
Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi
Journal of Nuclear Science and Technology, 58(3), p.259 - 277, 2021/03
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Research and development were made for accuracy improvement of neutron capture cross section data on Am among minor actinides. First, the emission probabilities of decay
rays were obtained with high accuracy, and the amount of the ground state of
Am produced by reactor neutron irradiation of
Am was examined by
-ray measurement. Next, the total amount of isomer and ground states was examined by
-ray measurement. Thermal-neutron capture cross sections and resonance integrals were derived both for the
Am(n,
)
Am and for
Am(n,
)
Am reactions.
Nagaoka, Mika; Fujita, Hiroki; Aida, Taku*; Guo, H.*; Smith, R. L. Jr.*
Applied Radiation and Isotopes, 168, p.109465_1 - 109465_6, 2021/02
Times Cited Count:1 Percentile:81.22(Chemistry, Inorganic & Nuclear)The radioactivities in the environmental samples are analyzed to monitor the nuclear power facilities. The pretreatment of radioactive nuclides of alpha and beta emitters in the environmental samples is performed with acid to decompose organic matter and extract object nuclide such as Sr, U and Pu. However, the pretreatment methods are time-consuming and used many concentrated acid solutions that are unsafe and hazardous. Therefore, we develop to the new pretreatment method using supercritical water instead of acid. Hydrothermal pretreatment of soils (Andosols) from Ibaraki prefecture (Japan) was used to improve methods for monitoring radioactive Sr and U. Calcined samples were pretreated with subcritical or supercritical water (SCW) followed by extraction with 0.5 M HNO
solutions. With SCW pretreatment, recoveries of Sr and U were 70% and 40%, respectively. Experimental recoveries obtained can be described by a linear relationship in water density. The proposed method is robust and can lower environmental burden of routine analytical protocols.
Collaborative Laboratories for Advanced Decommissioning Science; Kyushu University*
JAEA-Review 2020-036, 176 Pages, 2021/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Transparent Materials for Radiation Shield Using Nanoparticles" conducted in FY2019. The present study aims to reduce radiation exposure of workers in debris retrieval/analysis and reduce deterioration of optical and electronic systems in remote cameras. For these purposes, we develop transparent radiation shield by making the shield materials into nanoparticles, and dispersing/solidifying them in epoxy resin. By making boride or heavy metal compounds into nanoparticles, we will also develop a radiation shield that shields both neutrons and gamma-rays, and also suppresses secondary gamma-rays produced from neutrons.
Takeda, Takeshi
JAEA-Data/Code 2020-019, 58 Pages, 2021/01
An experiment denoted as SB-SL-01 was conducted on March 27, 1990 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-IV (ROSA-IV) Program. The ROSA/LSTF experiment SB-SL-01 simulated a main steam line break (MSLB) accident in a pressurized water reactor (PWR). The test assumptions were made such as auxiliary feedwater (AFW) injection into secondary-side of both steam generators (SGs) and coolant injection from high pressure injection (HPI) system of emergency core cooling system into cold legs in both loops. The MSLB led to a fast depressurization of broken SG, which caused a decrease in the broken SG secondary-side wide-range liquid level. The broken SG secondary-side wide-range liquid level recovered because of the AFW injection into the broken SG secondary-side. The primary pressure temporarily decreased a little just after the MSLB, and increased up to 16.1 MPa following the closure of the SG main steam isolation valves. Coolant was manually injected from the HPI system into cold legs in both loops a few minutes after the primary pressure reduced to below 10 MPa. The primary pressure raised due to the HPI coolant injection, but was kept at less than 16.2 MPa by fully opening a power-operated relief valve of pressurizer. The core was filled with subcooled liquid through the experiment. Thermal stratification was seen in intact loop cold leg during the HPI coolant injection owing to the flow stagnation. On the other hand, significant natural circulation prevailed in broken loop. When the continuous core cooling was ensured by the successive coolant injection from the HPI system, the experiment was terminated. The experimental data obtained would be useful to consider recovery actions and procedures in the multiple fault accident with the MSLB of PWR. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment SB-SL-01.
Wang, Z.; Duan, G.*; Koshizuka, Seiichi*; Yamaji, Akifumi*
Nuclear Power Plant Design and Analysis Codes, p.439 - 461, 2021/00
Abe, Satoshi; Okagaki, Yuria; Ishigaki, Masahiro; Shibamoto, Yasuteru
Proceedings of OECD/NEA Workshop on Virtual CFD4NRS-8; Computational Fluid Dynamics for Nuclear Reactor Safety (Internet), 11 Pages, 2020/11
Lu, K.; Katsuyama, Jinya; Li, Y.
Journal of Pressure Vessel Technology, 142(5), p.051501_1 - 051501_10, 2020/10
Times Cited Count:0 Percentile:0(Engineering, Mechanical)Nakayama, Masashi
JAEA-Data/Code 2020-009, 98 Pages, 2020/09
Japan Atomic Energy Agency (JAEA) has developed a low alkaline cement, named as HFSC (Highly Fly-ash contained Silicafume Cement), in order to decrease the effect on geological environment of cementitious material. HFSC was used experimentally as the shotcrete (140m, 250m and 350m depth gallery) and lining concrete (GL-374m to GL-380m of east access shaft) in construction part of Horonobe URL. In order to evaluate the effect of HFSC on the surrounding rock and groundwater, concrete and rock cores were periodically sampled from the site where the in-situ construction test was conducted, and various analyzes were conducted. Ordinary Portland Cement (OPC) was used for part of 140m depth gallery, and the same analysis as HFSC was conducted, in order to compare the effect of OPC and HFSC. This report summarizes the results of analyzes conducted on core samples from 2009 to 2018.