Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 210

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of wide range photon detection system for muonic X-ray spectroscopy

Mizuno, Rurie*; Niikura, Megumi*; Saito, Takeshi*; Matsuzaki, Teiichiro*; Sakurai, Hiroyoshi*; Amato, A.*; Asari, Shunsuke*; Biswas, S.*; Chiu, I.-H. ; Gianluca, J.*; et al.

Nuclear Instruments and Methods in Physics Research A, 1060, p.169029_1 - 169029_14, 2024/03

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Journal Articles

Development of coupling technology for high temperature gas-cooled reactors and hydrogen production facility; HTTR heat application test project plan

Ishii, Katsunori; Morita, Keisuke; Noguchi, Hiroki; Aoki, Takeshi; Mizuta, Naoki; Hasegawa, Takeshi; Nagatsuka, Kentaro; Nomoto, Yasunobu; Shimizu, Atsushi; Iigaki, Kazuhiko; et al.

Dai-27-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2023/09

Journal Articles

Development of safety design philosophy of HTTR-Heat Application Test Facility

Aoki, Takeshi; Shimizu, Atsushi; Noguchi, Hiroki; Kurahayashi, Kaoru; Yasuda, Takanori; Nomoto, Yasunobu; Iigaki, Kazuhiko; Sato, Hiroyuki; Sakaba, Nariaki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

The safety design philosophy is developed for the HTTR (High Temperature Engineering Test Reactor) heat application test facility connecting high temperature gas-cooled reactor (HTGR) and the hydrogen production plant. The philosophy was proposed to apply proven conventional chemical plant standards to the hydrogen production facility for ensuring public safety against anticipated disasters caused by high pressure and combustible gases. The present study also proposed the safety design philosophy to meet specific safety requirements identified to the nuclear facilities with coupling to the hydrogen production facility such as measures to ensure a capability of normal operation of the nuclear facility against a fire and/or explosion of leaked combustible material, and fluctuation of amount of heat removal occurred in the hydrogen production plant. The safety design philosophy will be utilized to establish its basic and detailed designs of the HTTR-heat application test facility.

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and hydrogen production facility, 1; Overview of the HTTR heat application test plan to establish high safety coupling technology

Nomoto, Yasunobu; Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and Hydrogen Production Facility, 2; Development plan for coupling equipment between HTTR and Hydrogen Production Facility

Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; Noguchi, Hiroki; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 6 Pages, 2023/05

Journal Articles

Testing mosses exposed in bags as biointerceptors of airborne radiocaesium after the Fukushima Dai-ichi Nuclear Power Station accident

Di Palma, A.; Adamo, P.*; Dohi, Terumi; Fujiwara, Kenso; Hagiwara, Hiroki; Kitamura, Akihiro; Sakoda, Akihiro; Sato, Kazuhiko; Iijima, Kazuki

Chemosphere, 308, Part 1, p.136179_1 - 136179_13, 2022/12

 Times Cited Count:1 Percentile:14.8(Environmental Sciences)

The present study shows the use of mosses transplanted in bags, called as moss bags, as biosensors of airborne radioactive dusts in the environment of the evacuated zone of Fukushima. A standardized protocol was applied and three moss species were used. Background sites of Okayama Prefecture were used for comparison. In the Fukushima area, the moss bags were able to accumulate radiocaesium in all exposure sites and periods, with Sphagnum palustre moss acting as the most performant moss. The radiocaesium activity concentrations dectected in mosses were in strong agreement with the Cs deposition levels and decontamination status of each exposure site. The accumulation of soil-derived radiocaesium by moss bags was supported by autoradiography and electron microscopy analyses. The linear dependency of Cs accumulation with the exposure time allowed a radiocaesium quantitative assessment.

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:6 Percentile:84.97(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

JAEA Reports

Document collection of the Special Committee on HTTR Heat Application Test

Aoki, Takeshi; Shimizu, Atsushi; Iigaki, Kazuhiko; Okita, Shoichiro; Hasegawa, Takeshi; Mizuta, Naoki; Sato, Hiroyuki; Sakaba, Nariaki

JAEA-Review 2022-016, 193 Pages, 2022/08

JAEA-Review-2022-016.pdf:42.06MB

Aiming to realize a massive, cost-effective and carbon-free hydrogen production technology utilizing a high temperature gas cooled reactor (HTGR), Japan Atomic Energy Agency (JAEA) is planning a HTTR heat application test producing hydrogen with High Temperature Engineering Test Reactor (HTTR) achieved 950$$^{circ}$$C of the highest reactor outlet coolant temperature in the world. In the HTTR heat application test, it is required to establish its safety design realizing highly safe connection of a HTGR and a hydrogen production plant by the Nuclear Regulation Authority to obtain the permission of changes to reactor installation. However, installation of a system connecting the hydrogen production plant and a nuclear reactor, and its safety design has not been conducted so far in conventional nuclear power plant including HTTR in the world. A special committee on the HTTR heat application test, established under the HTGR Research and Development Center, considered a safety design philosophy for the HTTR heat application test based on an authorized safety design of HTTR in terms of conformity to the New Regulatory Requirements taking into account new considerable events as a result of the plant modification and connection of the hydrogen production plant. This report provides materials of the special committee such as technical reports, comments provided from committee members, response from JAEA for the comments and minutes of the committee.

JAEA Reports

Safety design philosophy of HTTR Heat Application Test Facility

Aoki, Takeshi; Shimizu, Atsushi; Iigaki, Kazuhiko; Okita, Shoichiro; Hasegawa, Takeshi; Mizuta, Naoki; Sato, Hiroyuki; Sakaba, Nariaki

JAEA-Technology 2022-011, 60 Pages, 2022/07

JAEA-Technology-2022-011.pdf:2.08MB

Japan Atomic Energy Agency is planning a High Temperature Engineering Test Reactor (HTTR) heat application test producing hydrogen with the HTTR which achieved the highest reactor outlet coolant temperature of 950$$^{circ}$$C in the world to realize a massive, cost-effective and carbon-free hydrogen production technology utilizing a high temperature gas cooled reactor (HTGR). In the HTTR heat application test, it is required to establish its safety design for coupling a hydrogen production plant to HTGR through the licensing by the Nuclear Regulation Authority (NRA). A draft of a safety design philosophy for the HTTR heat application test facility was considered taking into account postulated events due to the plant modification and coupling of the hydrogen production plant based on the HTTR safety design which was authorized through the safety review of the NRA against New Regulatory Requirements. The safety design philosophy was examined to apply proven conventional chemical plant standards to the hydrogen production plant for ensuring public safety against disasters caused by high pressure gases. This report presents a result of a consideration on safety design philosophies regarding the reasonability and condition to apply the High Pressure Gas Safety Act for the hydrogen production plant, safety classifications, seismic design classification, identification of important safety system.

Journal Articles

Atmospheric resuspension of insoluble radioactive cesium bearing particles found in the difficult-to-return area in Fukushima

Tang, P.*; Kita, Kazuyuki*; Igarashi, Yasuhito*; Satou, Yukihiko; Hatanaka, Kotaro*; Adachi, Koji*; Kinase, Takeshi*; Ninomiya, Kazuhiko*; Shinohara, Atsushi*

Progress in Earth and Planetary Science (Internet), 9(1), p.17_1 - 17_15, 2022/03

 Times Cited Count:5 Percentile:69.58(Geosciences, Multidisciplinary)

Journal Articles

Numerical reproduction of dissolved U concentrations in a PO$$_{4}$$-treated column study of Hanford 300 area sediment using a simple ion exchange and immobile domain model

Saito, Tatsuo; Sato, Kazuhiko; Yamazawa, Hiromi*

Journal of Environmental Radioactivity, 237, p.106708_1 - 106708_9, 2021/10

 Times Cited Count:2 Percentile:13.39(Environmental Sciences)

We succeeded at numerical reproduction of dissolved U concentrations from column experiments with PO$$_{4}$$-treated Hanford 300 Area sediment. The time-series curves of dissolved U concentrations under various Darcy flow rate conditions were reproduced by the numerical model in the present study through optimization of the following parameters:(i) the mass of U in mobile domain (on surface soil connected to the stream) and the rest of the total U left as precipitation in immobile domain (isolated in deep soil);(ii) the mixing ratio between immobile and mobile domains, to fit the final recovering curve of concentration; and (iii) the cation exchange capacity (CEC$$_{Zp}$$) and equilibrium constant (k$$_{Zp}$$) of the exchange reaction of UO$$_{2}$$$$^{2+}$$ and H$$^{+}$$ on simulated soil surface ($$Zp$$), to fit the transient equilibrium concentration, forming the bed of the bathtub curve.

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

Journal Articles

Structural and compositional characteristics of Fukushima release particulate material from Units 1 and 3 elucidates release mechanisms, accident chronology and future decommissioning strategy

Martin, P. G.*; Jones, C. P.*; Bartlett, S.*; Ignatyev, K.*; Megson-Smith, D.*; Satou, Yukihiko; Cipiccia, S.*; Batey, D. J.*; Rau, C.*; Sueki, Keisuke*; et al.

Scientific Reports (Internet), 10, p.22056_1 - 22056_17, 2020/12

 Times Cited Count:1 Percentile:7.05(Multidisciplinary Sciences)

Journal Articles

Coexistence of two components in magnetic excitations of La$$_{2-x}$$Sr$$_{x}$$CuO$$_{4}$$ ($$x$$ = 0.10 and 0.16)

Sato, Kentaro*; Ikeuchi, Kazuhiko*; Kajimoto, Ryoichi; Wakimoto, Shuichi; Arai, Masatoshi*; Fujita, Masaki*

Journal of the Physical Society of Japan, 89(11), p.114703_1 - 114703_7, 2020/11

 Times Cited Count:6 Percentile:50.41(Physics, Multidisciplinary)

Journal Articles

Classification of the insoluble particles including radioactive Cs found in Okuma town and Futaba town, Fukushima prefecture

Igarashi, Junya*; Zhang, Z. J.*; Ninomiya, Kazuhiko*; Shinohara, Atsushi*; Satou, Yukihiko; Minowa, Haruka*; Yoshikawa, Hideki

KEK Proceedings 2019-2, p.54 - 59, 2019/11

no abstracts in English

Journal Articles

First determination of Pu isotopes ($$^{239}$$Pu, $$^{240}$$Pu and $$^{241}$$Pu) in radioactive particles derived from Fukushima Daiichi Nuclear Power Plant accident

Igarashi, Junya*; Zheng, J.*; Zhang, Z.*; Ninomiya, Kazuhiko*; Satou, Yukihiko; Fukuda, Miho*; Ni, Y.*; Aono, Tatsuo*; Shinohara, Atsushi*

Scientific Reports (Internet), 9(1), p.11807_1 - 11807_10, 2019/08

 Times Cited Count:20 Percentile:65.32(Multidisciplinary Sciences)

Radioactive particles were released into the environment during the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Many studies have been conducted to elucidate the chemical composition of released radioactive particles in order to understand their formation process. However, whether radioactive particles contain nuclear fuel radionuclides remains to be investigated. Here, we report the first determination of Pu isotopes in radioactive particles. To determine the Pu isotopes ($$^{239}$$Pu, $$^{240}$$Pu and $$^{241}$$Pu) in radioactive particles derived from the FDNPP accident which were free from the influence of global fallout, radiochemical analysis and inductively coupled plasma-mass spectrometry measurements were conducted. Radioactive particles derived from unit 1 and unit 2 or 3 were analyzed. For the radioactive particles derived from unit 1, activities of $$^{239+240}$$Pu and $$^{241}$$Pu were (1.70-7.06)$$times$$10$$^{-5}$$ Bq and (4.10-8.10)$$times$$10$$^{-3}$$ Bq, respectively and atom ratios of $$^{240}$$Pu/$$^{239}$$Pu and $$^{241}$$Pu/$$^{239}$$Pu were 0.330-0.415 and 0.162-0.178, respectively. These ratios were consistent with the simulation results from ORIGEN code and measurements from various environmental samples. In contrast, Pu was not detected in the radioactive particles derived from unit 2 or 3. The difference in Pu contents is clear evidence towards different formation processes of radioactive particles, and detailed formation processes can be investigated from Pu analysis.

Journal Articles

Activity of $$^{90}$$Sr in fallout particles collected in the difficult-to-return zone around the Fukushima Daiichi Nuclear Power Plant

Zhang, Z.*; Igarashi, Junya*; Satou, Yukihiko; Ninomiya, Kazuhiko*; Sueki, Keisuke*; Shinohara, Atsushi*

Environmental Science & Technology, 53(10), p.5868 - 5876, 2019/05

 Times Cited Count:19 Percentile:63.48(Engineering, Environmental)

The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident released abundant radioactive particles into the surrounding environment. Herein, we analyzed the activity of $$^{90}$$Sr in these particles to estimate the contribution of this radionuclide to the overall radiation exposure and shed light on the processes that occurred during the accident. Seven radioactive particles were isolated from the dust and soil samples collected from areas surrounding the FDNPP, and the minimum/maximum $$^{137}$$Cs activities were determined as 224/4,100 Bq. Based on the size, specific activity, and $$^{134}$$Cs/$$^{137}$$Cs activity ratios, we concluded that six of the seven radioactive particles were released from the Unit 1 reactor, while one particle was released from the Unit 3 reactor by a hydrogen explosion. Strontium-90 was detected in all radioactive particles, and the minimal/maximal $$^{90}$$Sr activities were determined as 0.046/1.4 Bq. $$^{137}$$Cs/$$^{90}$$Sr activity ratios above 1000 were observed for all seven particles, that is, compared to $$^{137}$$Cs, $$^{90}$$Sr had negligible contribution to the overall radiation exposure. The $$^{137}$$Cs/$$^{90}$$Sr activity ratios of the radioactive particles were similar to those of terrestrial environmental samples and were higher for particles released from the Unit 1 reactor than for samples collected from the Unit 1 reactor building, which indicates possibility of additional $$^{90}$$Sr -rich contamination after release of the particles.

Journal Articles

Environmental research on uranium at the Ningyo-Toge Environmental Engineering Center, JAEA

Sato, Kazuhiko; Yagi, Naoto; Nakagiri, Toshio

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 6 Pages, 2019/05

no abstracts in English

Journal Articles

Local structure study of the iron-based systems of BaFe$$_2$$As$$_2$$ and LiFeAs by X-ray PDF and XAFS analyses

Li, S.*; Toyoda, Masayuki*; Kobayashi, Yoshiaki*; Ito, Masayuki*; Ikeuchi, Kazuhiko*; Yoneda, Yasuhiro; Otani, Akira*; Matsumura, Daiju; Asano, Shun*; Mizuki, Junichiro*; et al.

Physica C, 555, p.45 - 53, 2018/12

 Times Cited Count:1 Percentile:5.02(Physics, Applied)

${it T}$-dependence of local distortions in BaFe$$_2$$As$$_2$$ and LiFeAs by X-ray PDF and XAFS methods. Although PDF data exhibit anomaly at the structure transition temperature, EXAFS data exhibit no anomaly. Data supporting the local orthorhombicity at 300 K in the tetragonal phase for BaFe$$_2$$As$$_2$$. Arguments on the origins of the 4-fold symmetry breaking in the ground average structure of the tetragonal phase.

JAEA Reports

Uranium and environmental research platform; Social gathering of uranium and environmental research

Nakayama, Takuya; Yagi, Naoto; Sato, Kazuhiko; Hinoda, Shingo; Nakagiri, Toshio; Morimoto, Yasuyuki; Umezawa, Katsuhiro; Sugitsue, Noritake

JAEA-Review 2018-005, 163 Pages, 2018/03

JAEA-Review-2018-005.pdf:72.95MB

The Ningyo-toge Environmental Engineering Center of JAEA has been working together with local communities for more than 60 years. Through our R&D projects on from uranium exploration to uranium enrichment as a part of the nuclear fuel cycle (i.e., front-end), we have accumulated experiences in the fields of management of uranium related technology. Taking advantage of such our potential, we will start new R&D program on "Research on Uranium and the Environment". In December 2016 we announced our new concept of the "Uranium and Environmental Research Platform" as a framework aimed at contributing to regional and international society through R&D programs (environmental research and uranium waste engineering research) that are needed to steadily carry out decommissioning of uranium handling facilities.

210 (Records 1-20 displayed on this page)