Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 64

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Status report of JAEA-AMS-TONO; Research and technical development in the last four years

Kokubu, Yoko; Fujita, Natsuko; Watanabe, Takahiro; Matsubara, Akihiro; Ishizaka, Chika; Miyake, Masayasu*; Nishio, Tomohiro*; Kato, Motohisa*; Ogawa, Yumi*; Ishii, Masahiro*; et al.

Nuclear Instruments and Methods in Physics Research B, 539, p.68 - 72, 2023/06

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has an accelerator mass spectrometer (JAEA-AMS-TONO-5MV). The spectrometer enabled us to use a multi-nuclide AMS of carbon-14 ($$^{14}$$C), beryllium-10, aluminium-26 and iodine-129, and we have recently been proceeding test measurement of chlorine-36. In response to an increase of samples, we installed a state-of-the-art multi-nuclide AMS with a 300 kV Tandetron accelerator in 2020. Recently, we are driving the development of techniques of isobar separation in AMS and of sample preparation. Ion channeling is applied to remove isobaric interference and we are building a prototype AMS based on this technique for downsizing of AMS. The small sample graphitization for $$^{14}$$C has been attempted using an automated graphitization equipment equipped with an elemental analyzer.

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

Journal Articles

Present status of the JAEA-AMS-TONO (2019-2020)

Fujita, Natsuko; Matsubara, Akihiro; Miyake, Masayasu*; Watanabe, Takahiro; Kokubu, Yoko; Nishio, Tomohiro*; Ogawa, Yumi*; Kato, Motohisa*; Shimada, Akiomi; Ogata, Nobuhisa

Dai-33-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, P. 48, 2022/04

no abstracts in English

Journal Articles

Present status of the JAEA-AMS-TONO in 2019

Fujita, Natsuko; Matsubara, Akihiro; Miyake, Masayasu*; Watanabe, Takahiro; Kokubu, Yoko; Kato, Motohisa*; Okabe, Nobuaki*; Isozaki, Nobuhiro*; Ishizaka, Chika*; Nishio, Tomohiro; et al.

Proceedings of the 8th East Asia Accelerator Mass Spectrometry Symposium and the 22nd Japan Accelerator Mass Spectrometry symposium (EA-AMS 8 & JAMS-22), p.34 - 36, 2020/00

no abstracts in English

Journal Articles

Current status of JAEA-AMS-TONO in the 20th year

Kokubu, Yoko; Fujita, Natsuko; Miyake, Masayasu; Watanabe, Takahiro; Ishizaka, Chika; Okabe, Nobuaki; Ishimaru, Tsuneari; Matsubara, Akihiro*; Nishizawa, Akimitsu*; Nishio, Tomohiro*; et al.

Nuclear Instruments and Methods in Physics Research B, 456, p.271 - 275, 2019/10

 Times Cited Count:5 Percentile:48.18(Instruments & Instrumentation)

JAEA-AMS-TONO has been in operation at the Tono Geoscience Center, Japan Atomic Energy Agency since 1998 and 20 years have passed from the beginning of its utilization. The AMS system is a versatile system based on a 5 MV tandem Pelletron type accelerator. The system has been used to measure carbon-14 ($$^{14}$$C), beryllium-10 ($$^{10}$$Be) and aluminium-26 ($$^{26}$$Al). In addition, the development of measurement of iodine-129 ($$^{129}$$I) has been started. The main use is measurement of $$^{14}$$C in geological samples for dating studies in neotectonics and hydrogeology. In order to increase the speed of sample preparation, we introduced the automated graphitization equipment and made a gas-strip line to collect dissolved inorganic carbon in groundwater samples. Measurement of $$^{10}$$Be and $$^{26}$$Al has been used for geoscience studies and the detection limit in the measurement of $$^{10}$$Be was improved by $$^{7}$$Be-counting suppression. Recently tuning of measurement condition of $$^{129}$$I has been progressed.

Journal Articles

The present status of the AGE3 automated graphitization equipment for radiocarbon dating at the JAEA-AMS-TONO

Watanabe, Takahiro; Kokubu, Yoko; Fujita, Natsuko; Ishizaka, Chika*; Nishio, Tomohiro; Matsubara, Akihiro*; Miyake, Masayasu; Kato, Motohisa*; Isozaki, Nobuhiro*; Torazawa, Hitoshi*; et al.

JAEA-Conf 2018-002, p.116 - 119, 2019/02

AMS is widely used for radiocarbon dating of geological samples. However, improvement in efficiency of sample preparation techniques are needed for high-time resolution dataset. In 2016, automated graphitization equipment (AGE3, IonPlus AG) has been installed in Toki Research Institute of Isotope Geology and Geochronology, Tono Geoscience Center, JAEA. Background values and carbon recovery rates during preparation process of AGE3 should be estimated before application in radiocarbon dating. In this study, the AGE3 system was evaluated using the international standard materials (IAEA-C1, C4, C5, C6, C7, C9 and NIST-SRM4990C) at JAEA-AMS-TONO. Graphite samples was prepared by the AGE3 system and radiocarbon concentration of these standards was measured by AMS. The results were agreement with the consensus values. Background values were 0.15$$pm$$0.01 pMC (IAEA-C1) using the AGE3 system. Therefore, we concluded that the system can be adapted for radiocarbon dating of geological samples.

Journal Articles

The Twenty years of JAEA-AMS-TONO

Kokubu, Yoko; Fujita, Natsuko; Matsubara, Akihiro*; Nishizawa, Akimitsu*; Nishio, Tomohiro; Miyake, Masayasu; Ishimaru, Tsuneari; Watanabe, Takahiro; Ogata, Nobuhisa; Shimada, Akiomi; et al.

JAEA-Conf 2018-002, p.5 - 8, 2019/02

no abstracts in English

Journal Articles

Present status of the accelerator facility at the JAEA-AMS-TONO; 2016

Fujita, Natsuko; Miyake, Masayasu; Watanabe, Takahiro; Kokubu, Yoko; Ishimaru, Tsuneari; Matsubara, Akihiro*; Nishio, Tomohiro*; Kato, Motohisa*; Isozaki, Nobuhiro*; Torazawa, Hitoshi*; et al.

JAEA-Conf 2018-013, p.96 - 99, 2019/02

no abstracts in English

Journal Articles

Present status of the accelerator facility at the JAEA-AMS-TONO; 2017

Fujita, Natsuko; Miyake, Masayasu; Watanabe, Takahiro; Kokubu, Yoko; Matsubara, Akihiro*; Kato, Motohisa*; Okabe, Nobuaki; Isozaki, Nobuhiro*; Ishizaka, Chika*; Torazawa, Hitoshi*; et al.

Dai-31-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.92 - 95, 2018/12

no abstracts in English

Journal Articles

Present status of the JAEA-AMS-TONO; 2016

Fujita, Natsuko; Miyake, Masayasu; Watanabe, Takahiro; Kokubu, Yoko; Ishimaru, Tsuneari; Matsubara, Akihiro*; Isozaki, Nobuhiro*; Nishio, Tomohiro*; Kato, Motohisa*; Torazawa, Hitoshi*; et al.

Dai-19-Kai AMS Shimpojiumu, 2016-Nendo "Jumoku Nenrin" Kenkyukai Kyodo Kaisai Shimpojiumu Hokokushu, p.68 - 71, 2017/06

no abstracts in English

Journal Articles

Present status of the tandem accelerator at the JAEA-AMS-TONO; 2015

Fujita, Natsuko; Matsubara, Akihiro*; Watanabe, Takahiro; Kokubu, Yoko; Umeda, Koji*; Ishimaru, Tsuneari; Nishizawa, Akimitsu*; Miyake, Masayasu; Owaki, Yoshio*; Nishio, Tomohiro*; et al.

Dai-29-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.39 - 42, 2017/03

no abstracts in English

Journal Articles

Present status of the JAEA-AMS-TONO; 2015

Fujita, Natsuko; Matsubara, Akihiro; Watanabe, Takahiro; Kokubu, Yoko; Umeda, Koji; Nishizawa, Akimitsu*; Miyake, Masayasu*; Owaki, Yoshio*; Nishio, Tomohiro*; Kato, Motohisa*

Dai-18-Kai AMS Shimpojiumu Hokokushu, p.85 - 90, 2016/12

no abstracts in English

JAEA Reports

Summary of instructor training program in FY2014 aiming at Asian countries introducing nuclear technologies for peaceful use (Contract program)

Hidaka, Akihide; Nakano, Yoshihiro; Watanabe, Yoko; Arai, Nobuyoshi; Sawada, Makoto; Kanaizuka, Seiichi*; Katogi, Aki; Shimada, Mayuka*; Ishikawa, Tomomi*; Ebine, Masako*; et al.

JAEA-Review 2016-011, 208 Pages, 2016/07

JAEA-Review-2016-011-01.pdf:33.85MB
JAEA-Review-2016-011-02.pdf:27.68MB

JAEA has been conducting the Instructor Training Program (ITP) since 1996 under the auspices of MEXT to contribute to human resource development in currently 11 Asian countries in the field of radiation utilization for seeking peaceful use of nuclear energy. ITP consists of Instructor Training Course (ITC), Follow-up Training Course (FTC) and Nuclear Technology Seminars. In the ITP, trainings or seminars relating to technology for nuclear utilization are held in Japan by inviting nuclear related people from Asian countries to Japan and after that, the past trainees are supported during FTC by dispatching Japanese specialists to Asian countries. News Letter is also prepared to provide the broad range of information obtained through the trainings for local people near NPPs in Japan. The present report describes the activities of FY2014 ITP and future challenges for improving ITP more effectively.

Journal Articles

Excitation spectra and wave functions of quasiparticle bound states in bilayer Rashba superconductors

Higashi, Yoichi*; Nagai, Yuki; Yoshida, Tomohiro*; Kato, Masaru*; Yanase, Yoichi*

Physica C, 518, p.1 - 4, 2015/11

 Times Cited Count:0 Percentile:0(Physics, Applied)

We study the excitation spectra and the wave functions of quasiparticle bound states at a vortex and an edge in bilayer Rashba superconductors under a magnetic field. In particular, we focus on the quasiparticle states at the zero energy in the pair- density wave state in a topologically non-trivial phase. We numerically demonstrate that the quasiparticle wave functions with zero energy are localized at both the edge and the vortex core if the magnetic field exceed the critical value.

Journal Articles

Reactor antineutrino monitoring with a plastic scintillator array as a new safeguards method

Oguri, Shugo*; Kuroda, Yasuhiro*; Kato, Yo*; Nakata, Ryoko*; Inoue, Yoshizumi*; Ito, Chikara; Minowa, Makoto*

Nuclear Instruments and Methods in Physics Research A, 757, p.33 - 39, 2014/09

 Times Cited Count:42 Percentile:95.62(Instruments & Instrumentation)

We developed a segmented reactor antineutrino detector made of plastic scintillators for the nuclear safeguard application and demonstrate almost unmanned field operation at a commercial power plant reactor. We observed the difference of the reactor antineutrino flux with the reactor ON and OFF above the ground outside the reactor building.

Journal Articles

A Mobile antineutrino detector with plastic scintillators

Kuroda, Yasuhiro*; Oguri, Shugo*; Kato, Yo*; Nakata, Ryoko*; Inoue, Yoshizumi*; Ito, Chikara; Minowa, Makoto*

Nuclear Instruments and Methods in Physics Research A, 690, p.41 - 47, 2012/10

 Times Cited Count:36 Percentile:92.42(Instruments & Instrumentation)

We propose a new type segmented antineutrino detector made of plastic scintillators for the nuclear safeguard application. A small prototype was built and tested to measure background events. A satisfactory unmanned field operation of the detector system was demonstrated. Besides, a detailed Monte Carlo simulation code was developed to estimate the antineutrino detection efficiency of the detector.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2010

Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Nakada, Akira; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Kokubun, Yuji; et al.

JAEA-Review 2012-015, 166 Pages, 2012/05

JAEA-Review-2012-015.pdf:3.53MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2010 to March 2011. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant on Tokyo Electric Power Co. in 2011 March. Appendices present comprehensive information, such as monitoring program, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data exceeded the normal range of fluctuation by the accidental release was evaluated in the appendices.

JAEA Reports

Results of the environmental radiation monitoring following the accident at the Fukushima Daiichi Nuclear Power Plant; Interim report (Ambient radiation dose rate, radioactivity concentration in the air and radioactivity concentration in the fallout)

Furuta, Sadaaki; Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Imaizumi, Kenji; Takeyasu, Masanori; Nakada, Akira; Fujita, Hiroki; Mizutani, Tomoko; Morisawa, Masato; et al.

JAEA-Review 2011-035, 89 Pages, 2011/08

JAEA-Review-2011-035.pdf:2.97MB

As a correspondence to the accident at the Fukushima Daiichi Nuclear Power Plant, the environmental radiation monitoring was performed at the Nuclear Fuel Cycle Engineering Laboratories, JAEA. This report presented the measurement results of ambient radiation dose rate, radioactivity concentration in the air and radioactivity concentration in fallout and meteorological observation result until May 31, 2011. The ambient radiation dose rate increased, with the peak dose rate of several thousand nGy/h at 7 o'clock in March 15, at 5 o'clock in March 16, and at 4 o'clock in March 21. The variation on the radioactivity concentration in the air and in fallout showed the almost same tendency as that of the dose rate. The concentration ratio of I-131/Cs-137 in the air increased to about 100. The dose was estimated resulting from internal exposure due to inhalation.

Journal Articles

Recent progress in the energy recovery linac project in Japan

Sakanaka, Shogo*; Akemoto, Mitsuo*; Aoto, Tomohiro*; Arakawa, Dai*; Asaoka, Seiji*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; et al.

Proceedings of 1st International Particle Accelerator Conference (IPAC '10) (Internet), p.2338 - 2340, 2010/05

Future synchrotron light source using a 5-GeV energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting R&D efforts for that. We are developing high-brightness DC photocathode guns, two types of cryomodules for both injector and main superconducting (SC) linacs, and 1.3 GHz high CW-power RF sources. We are also constructing the Compact ERL (cERL) for demonstrating the recirculation of low-emittance, high-current beams using above-mentioned critical technologies.

Journal Articles

Pulse radiolysis study of ion-species effects on the solvated electron in alkylammonium ionic liquids

Kondo, Takafumi*; Asano, Akira*; Yang, J.*; Norizawa, Kimihiro*; Takahashi, Kenji*; Taguchi, Mitsumasa; Nagaishi, Ryuji; Kato, Ryuji*; Yoshida, Yoichi*

Radiation Physics and Chemistry, 78(12), p.1157 - 1160, 2009/12

 Times Cited Count:28 Percentile:85.67(Chemistry, Physical)

Spectrum and kinetic behavior of solvated electrons (e$$_{sol}$$$$^{-}$$) in alkyl ammonium ionic liquids (ILs), ${it i.e.}$ DEMMA-TFSI, DEMMA-BF4, TMPA-TFSI, PP13-TFSI, P13-TFSI and P14-TFSI were investigated by pulse radiolysis method. The e$$_{sol}$$$$^{-}$$ in the ILs have same absorption peak at 1100 nm with a molar absorption coefficient of 1.5-2.3$$times$$10$$^{4}$$ dm$$^{3}$$mol$$^{-1}$$cm$$^{-1}$$. The reaction rate constant of e$$_{sol}$$$$^{-}$$ with Pyrene (Py) was 1.5-3.5$$times$$10$$^{8}$$ dm$$^{3}$$mol$$^{-1}$$s$$^{-1}$$. These values were about one order of magnitude higher than that of diffusion controlled limit, which was calculated from measured viscosity. The dry electron (e$$_{dry}$$$$^{-}$$) reacts with Py, and its rate constant in DEMMA-TFSI was 7.9$$times$$10$$^{11}$$ dm$$^{3}$$mol$$^{-1}$$s$$^{-1}$$, three orders of magnitude higher than that of the e$$_{sol}$$$$^{-}$$ reactions.

64 (Records 1-20 displayed on this page)