Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 55

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Nuclear criticality benchmark analyses on TRIGA-type reactor systems by using continuous-energy Monte Carlo code MVP with JENDL-5

Yanagisawa, Hiroshi; Umeda, Miki; Motome, Yuiko; Murao, Hiroyuki

JAEA-Technology 2022-030, 80 Pages, 2023/02

JAEA-Technology-2022-030.pdf:2.57MB
JAEA-Technology-2022-030(errata).pdf:0.11MB

Nuclear criticality benchmark analyses were carried out for TRIGA-type reactor systems in which uranium-zirconium hydride fuel rods are loaded by using the continuous-energy Monte Carlo code MVP with the evaluated nuclear data library JENDL-5. The analyses cover two sorts of benchmark data, the IEU-COMP-THERM-003 and IEU-COMP-THERM-013 in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook, and effective neutron multiplication factors, reactivity worths for control rods etc. were calculated by JENDL-5 in comparison with those by the previous version of JENDL. As the results, it was confirmed that the effective neutron multiplication factors obtained by JENDL-5 were 0.4 to 0.6% greater than those by JENDL-4.0, and that there were no significant differences in the calculated reactivity worths by between JENDL-5 and JENDL-4.0. Those results are considered to be helpful for the confirmation of calculation accuracy in the analyses on NSRR control rod worths, which are planned in the future.

JAEA Reports

Evaluation of the minimum critical amount for heterogeneous lattice systems composed of fuel rods utilized in low-power water-moderated research and test reactors by using continuous-energy Monte Carlo code MVP with JENDL-4.0

Yanagisawa, Hiroshi

JAEA-Technology 2021-023, 190 Pages, 2021/11

JAEA-Technology-2021-023.pdf:5.25MB

Computational analyses on nuclear criticality characteristics were carried out for heterogeneous lattice systems composed of water moderator and fuel rods utilized in low-power research and test reactors, in which the depletion of fuel due to burnup is relatively small, by using the continuous-energy Monte Carlo code MVP Version 2 with the evaluated nuclear data library JENDL-4.0. In the analyses, the minimum critical number of fuel rods was evaluated using calculated neutron multiplication factors for the heterogeneous systems of the uranium dioxide fuel rod in the Static Experiments Critical Facility (STACY) and the Tank-type Critical Assembly (TCA), and the uranium-zirconium hydride fuel rod in the Nuclear Safety Research Reactor (NSRR). In addition, six sorts of the ratio of reaction rates, which are components of neutron multiplication factors, were calculated in the analyses to explain the variation of neutron multiplication factors with the ratio of water moderator to fuel volume in a unit fuel rod cell. Those results of analyses are considered to be useful for the confirmation of reasonableness and validity of criticality safety measures as data showing criticality characteristics for water-moderated heterogeneous lattice systems composed of the existing fuel rods in research and test reactors, of which criticality data are not sufficiently provided by the Criticality Safety Handbook.

Journal Articles

Evaluation of nuclear characteristics of light-water-moderated heterogeneous cores in modified STACY

Izawa, Kazuhiko; Aoyama, Yasuo; Sono, Hiroki; Ogawa, Kazuhiko; Yanagisawa, Hiroshi; Miyoshi, Yoshinori

Proceedings of 9th International Conference on Nuclear Criticality (ICNC 2011) (CD-ROM), 11 Pages, 2012/02

For reactor physics and criticality safety researches, the Static Experiment Critical Facility (STACY) will be modified. In the modification, the present STACY, solution-fuel-type homogeneous cores, will be converted to fuel-pin-type heterogeneous cores moderated by light water. For nuclear safety design of the modified STACY, computational analyses have been carried out by using a Monte Carlo code MVP and a transport code system DANTSYS with cross-section data based on the JENDL-3.3. In the analyses, basic nuclear characteristics have been evaluated, such as criticality, water-level worth and reactor shutdown margin. By the results of these analyses, the feasibility of reactivity control mechanism and the sufficiency of reactor shutdown margin of the modified STACY were confirmed. In addition, temperature and void coefficients of reactivity and kinetic parameters were obtained to comprehend nuclear characteristics of the modified STACY.

JAEA Reports

Analyses of neutronic characteristics of STACY heterogeneous cores composed of 6wt%-enriched uranyl nitrate solution containing gadolinium and 1.5cm-lattice-pitch fuel pins

Izawa, Kazuhiko; Aoyama, Yasuo; Sono, Hiroki; Ogawa, Kazuhiko; Yanagisawa, Hiroshi

JAEA-Technology 2007-001, 40 Pages, 2007/02

JAEA-Technology-2007-001.pdf:2.73MB

A series of critical experiments is conducted in FY 2006 using a heterogeneous core of the Static Experiment Critical Facility (STACY) in the Japan Atomic Energy Agency (JAEA). In the experiment, the core is composed of uranyl nitrate solution ($$^{235}$$U enrichment 6wt%) containing soluble poison (gadolinium) and 333 pins of uranium dioxide ($$^{235}$$U enrichment 5wt%) loaded at a latticepitch of 1.5cm. Prior to the experiment, the following neutronic characteristics were analyzed to assess safety of the core and operation parametor limits: criticality, reactivity and reactor shutdown margins. In the analyses, a Monte Carlo code, MVP, and a neutronics code system, SRAC, were used with an evaluated nuclear data library, JENDL-3.3. From these analyses, it was confirmed that the reactor shutdown margins would comply with the safety criteria under all conditions of the fuel used in the experiments. Simplified formulas for criticality and reactivity were also evaluated based on the analyzed values which are utilized to confirm the operation parameter limits during operations of the core.

Journal Articles

Evaluation of $$gamma$$-ray dose components in criticality accident situations

Sono, Hiroki; Yanagisawa, Hiroshi*; Ono, Akio*; Kojima, Takuji; Soramasu, Noboru*

Journal of Nuclear Science and Technology, 42(8), p.678 - 687, 2005/08

 Times Cited Count:4 Percentile:30.44(Nuclear Science & Technology)

Component analysis of $$gamma$$-ray doses in criticality accident situations is indispensable for further understanding on emission behavior of $$gamma$$-rays and accurate evaluation of external exposure to human bodies. Such dose components were evaluated, categorizing $$gamma$$-rays into four components: prompt, delayed, pseudo components in the period of criticality, and a residual component in the period after the termination of criticality. This evaluation was performed by the combination of dosimetry experiments at the TRACY facility using a thermoluminescent dosimeter (TLD) made of lithium tetra borate and computational analyses using a Monte Carlo code. The evaluation confirmed that the dose proportions of the above components varied with the distance from the TRACY core tank. This variation was due to the difference in attenuation of the individual components with the distance from the core tank. The evaluated dose proportions quantitatively clarified the contribution of the pseudo and the residual components to be excluded for accurate evaluation of $$gamma$$-ray exposure.

JAEA Reports

Evaluation of neutronic characteristics of TRACY water-reflected core system

Sono, Hiroki; Yanagisawa, Hiroshi*; Miyoshi, Yoshinori

JAERI-Tech 2003-096, 84 Pages, 2004/01

JAERI-Tech-2003-096.pdf:3.6MB

Prior to the supercritical experiments using a water-reflected core of the TRACY Facility, neutronic characteristics regarding criticality and reactivity of the core system were evaluated. In the analyses, a continuous energy Monte Carlo code, MVP, and a two-dimensional transport code, TWOTRAN, were used together with a nuclear data library, JENDL-3.3. By comparison to the characteristics in the former-used bare core system of TRACY, the water reflector was estimated not to change the kinetic parameter and to reduce the critical solution level by $$sim$$20 %, the temperature coefficient of reactivity by 6$$sim$$10 %, and the void coefficient of reactivity by $$sim$$18 %, respectively. According to the Nordheim-Fuchs model, the first peak power during a power excursion was evaluated to be $$sim$$15 % smaller than that in the bare system under the same conditions of fuel and reactivity insertion. The influence of the void feedback effect of reactivity, which is left out of consideration in the model, on the power characteristics will be evaluated from the results of the experiments.

JAEA Reports

Analyses of neutronic characteristics of STACY heterogeneous core with 1.5-cm-lattice-pitch fuel pins

Sono, Hiroki; Fukaya, Yuji; Yanagisawa, Hiroshi; Miyoshi, Yoshinori

JAERI-Tech 2003-065, 61 Pages, 2003/07

JAERI-Tech-2003-065.pdf:3.11MB

A series of critical experiments using a heterogeneous core of the Static Experiment Critical Facility (STACY) in the Japan Atomic Energy Research Institute is planned in F.Y. 2003. In the experiment, the core is composed of uranyl nitrate solution ($$^{235}$$U enrichment 6 wt%) and 333 pins of uranium dioxide ($$^{235}$$U enrichment 5 wt%) loaded in lattice-pitch of 1.5 cm. Prior to the experiment, neutronic characteristics are analyzed to evaluate neutronic safety and criticality limitations of the core. The analyzed items are the parameters on criticality, reactivity and reactor shutdown margins. In the analyses, a Monte Carlo code, MVP, and a neutronics code system, SRAC, have been used with an evaluated nuclear data library, JENDL-3.3. By using the calculated characteristics, simplified equations to interpolate these values and criticality limitations of the core are evaluated. It has been also confirmed that the reactor shutdown margins will comply with safety criteria under all fuel conditions in the experiments.

JAEA Reports

JAEA Reports

Measurements of power profile in TRACY supercritical experiment by detecting epithermal neutrons

Nakajima, Ken; Yanagisawa, Hiroshi; Miyoshi, Yoshinori

JAERI-Tech 2003-028, 31 Pages, 2003/03

JAERI-Tech-2003-028.pdf:1.38MB

We have tried to measure the power profile in the TRACY supercritical experiment with high accuracy by detecting epithermal neutrons. In order to measure the epithermal neutrons, a cadmium covered $$^{235}$$U fission chamber was used, and polyethylene, a neutron moderator, was set inside the cadmium to enhance the neutron detection efficiency. In addition, a lead shield was used to reduce the noise current due to gamma-rays. The measured results were compared with the ones using a thermal neutron detector, and it was found that the time delay effect in the thermal neutron detection, which was caused by the flight time of neutrons to reach the detector, distorted the power profile and reduced its peak value. The reduction ratio of peak power was about 4% for the relatively slow power change with the inserted reactivity of 1.5$, but it became over than 40% for the rapid power change with the reactivity of about 3$.

JAEA Reports

Photon and decay data libraries for ORIGEN2 code based on JENDL FP decay data file 2000

Katakura, Junichi; Yanagisawa, Hiroshi

JAERI-Data/Code 2002-021, 81 Pages, 2002/11

JAERI-Data-Code-2002-021.pdf:3.62MB

no abstracts in English

Journal Articles

Evaluation of photon shielding capability for epithermal neutron detection during reactivity-initiated power burst experiments

Yanagisawa, Hiroshi; Nakajima, Ken; Ono, Akio; Miyoshi, Yoshinori

Journal of Nuclear Science and Technology, 39(7), p.800 - 803, 2002/07

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Evaluation of power history during power burst experiments in TRACY by combination of $$gamma$$-ray and thermal neutron detectors

Yanagisawa, Hiroshi; Ono, Akio

Journal of Nuclear Science and Technology, 39(6), p.597 - 602, 2002/06

 Times Cited Count:2 Percentile:16.96(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Determination of $$gamma$$-ray exposure rate from short-lived fission products under criticality accident conditions

Yanagisawa, Hiroshi; Ono, Akio; Aizawa, Eiju

Journal of Nuclear Science and Technology, 39(5), p.499 - 505, 2002/05

 Times Cited Count:4 Percentile:29.2(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Report of TRACY operation

Aizawa, Eiju; Ogawa, Kazuhiko; Sakuraba, Koichi; Tsukamoto, Michio; Sugawara, Susumu; Takeuchi, Masaki*; Miyauchi, Masakatsu; Yanagisawa, Hiroshi; Ono, Akio

JAERI-Tech 2002-031, 120 Pages, 2002/03

JAERI-Tech-2002-031.pdf:4.32MB

TRACY (Transient Experiment Critical Facility) in NUCEF (Nuclear Safety Research Facility) is the pulse-type critical facility using uranyl nitrate solution which can carry out various supercritical experiments changing reactivity addition up to 3$.TRACY achieved its first criticality on 20th December 1995,and transient operations have been conducted Since1996.This report summarizes the operation data of 176 experiments from the first criticality to FY2000.

JAEA Reports

TRACY transient experiment databook, 3; Ramp feed experiment

Nakajima, Ken; Yamane, Yuichi; Ogawa, Kazuhiko; Aizawa, Eiju; Yanagisawa, Hiroshi; Miyoshi, Yoshinori

JAERI-Data/Code 2002-007, 123 Pages, 2002/03

JAERI-Data-Code-2002-007.pdf:4.34MB

no abstracts in English

JAEA Reports

TRACY transient experiment databook, 2; Ramp withdrawal experiment

Nakajima, Ken; Yamane, Yuichi; Ogawa, Kazuhiko; Aizawa, Eiju; Yanagisawa, Hiroshi; Miyoshi, Yoshinori

JAERI-Data/Code 2002-006, 176 Pages, 2002/03

JAERI-Data-Code-2002-006.pdf:6.33MB

no abstracts in English

JAEA Reports

TRACY transient experiment databook, 1; Pulse withdrawal experiment

Nakajima, Ken; Yamane, Yuichi; Ogawa, Kazuhiko; Aizawa, Eiju; Yanagisawa, Hiroshi; Miyoshi, Yoshinori

JAERI-Data/Code 2002-005, 158 Pages, 2002/03

JAERI-Data-Code-2002-005.pdf:6.55MB

no abstracts in English

Journal Articles

Simulation by Monte Carlo method of power varying with time detected by fission chamber in TRACY water-reflected system

Yanagisawa, Hiroshi; Ono, Akio

Journal of Nuclear Science and Technology, 39(1), p.76 - 81, 2002/01

 Times Cited Count:3 Percentile:23.39(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Measurement of neutron and $$gamma$$-ray absorbed doses under criticality accident conditions at TRACY using tissue-equivalent dosimeters

Sono, Hiroki; Yanagisawa, Hiroshi; Ono, Akio; Kojima, Takuji; Soramasu, Noboru*

Nuclear Science and Engineering, 139(2), p.209 - 220, 2001/10

 Times Cited Count:7 Percentile:48.66(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Annual report of STACY operation in FY. 2000; Experiments on neutron-interacting systems with two slab-shaped core tanks and 10% enriched uranyl nitrate solution, 2 (Contract research)

Onodera, Seiji; Hirose, Hideyuki; Izawa, Kazuhiko; Tanino, Shuichi; Kaminaga, Jota*; Sakuraba, Koichi; Miyauchi, Masakatsu; Tonoike, Kotaro; Miyoshi, Yoshinori; Yanagisawa, Hiroshi; et al.

JAERI-Tech 2001-057, 54 Pages, 2001/09

JAERI-Tech-2001-057.pdf:4.28MB

no abstracts in English

55 (Records 1-20 displayed on this page)