Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

SIMMER-III Analytic Equation-of-State Model

Morita, Koji; Tobita, Yoshiharu; kondo, Satoru; E.A.Fischer*

JNC TN9400 2000-005, 57 Pages, 1999/05

JNC-TN9400-2000-005.pdf:2.92MB

An improved analytic equation-of-state (EOS) model using flexible thermodynamic functions is developed for a reactor safety analysis code, SIMMER-III. The present EOS model is designed to have adequate accuracy in describing thermodynamic properties of reactor-core materials over wide temperature and pressure ranges and to consistently satisfy basic thermodynamic relationships without deterioration of the computing efficiency. The fluid-dynamic algorithm for pressure iteration consistently coupled with the EOS model is also described in the present report. The EOS data of the basic core materials, uranium dioxide, mixed-oxide fuel, stainless steel, and sodium, are developed up to the critical point by compiling the most up-to-date and reliable sources using basic thermodynamic relationships. The thermodynamic consistency and accuracy of the evaluated EOS data are also discussed by comparison with the available sources.

JAEA Reports

SIMMER-III Analytic Thermophysical Property Model

Morita, Koji; Tobita, Yoshiharu; kondo, Satoru; E.A.Fischer*

JNC TN9400 2000-004, 38 Pages, 1999/05

JNC-TN9400-2000-004.pdf:1.11MB

An analytic thermophysical property model using general function forms is developed for a reactor safety analysis code, SIMMER-III. The function forms arc designed to represent correct behavior of properties of reactor-core materials over wide temperature ranges, especially for the thermal conductivity and the viscosity near the critical point. The most up-to-date and reliable sources for uranium dioxide, mixed-oxide fuel, stainless stee1, and sodium available at present are used to determine parameters in the proposed functions. This model is also designed to be consistent with a SIMMER-III model on thermodynamic properties and equations of state for reactor-corc materials.

2 (Records 1-2 displayed on this page)
  • 1