Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

New precise measurements of muonium hyperfine structure at J-PARC MUSE

Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.

EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01

 Times Cited Count:13 Percentile:98.93(Quantum Science & Technology)

Journal Articles

Status quo of the injector for the IFMIF/EVEDA prototype accelerator

Shinto, Katsuhiro; Ichikawa, Masahiro; Takahashi, Yasuyuki*; Kubo, Takashi*; Tsutsumi, Kazuyoshi; Kikuchi, Takayuki; Kasugai, Atsushi; Sugimoto, Masayoshi; Gobin, R.*; Girardot, P.*; et al.

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1009 - 1012, 2014/10

The prototype accelerator is being developed as an engineering validation for the International Fusion Materials Irradiation Facility (IFMIF) equipped with an accelerator-driven-type neutron source for developing fusion reactor materials. This prototype accelerator is a deuteron linear accelerator consisting of an injector, an RFQ, a superconducting linac and their auxiliaries. It aims to produce a CW D$$^+$$ beam with the energy and current of 9 MeV/125 mA. The injector test was completed at CEA/Saclay in 2012 for producing a CW H$$^+$$ beam and a CW D$$^+$$ beam with the energy and current of 100 keV/140 mA. After the beam test at CEA/Saclay, the injector was transported to the International Fusion Energy Research Centre (IFERC) located in Rokkasho, Aomori, Japan. In the end of 2013, installation of the injector was started at IFERC for the injector beam test beginning from summer 2014 in order to obtain better beam qualities to be satisfied with the injection and acceleration of the following accelerators. In this paper, some results of the injector beam test performed at CEA/Saclay and the status quo of the installation of the injector at IFERC are presented.

Journal Articles

Development of water electrolysis cell for hydrogen production utilizing sulfur dioxide

Nakagiri, Toshio; Yamaki, Tetsuya; Asano, Masaharu; Tsutsumi, Yasuyuki*

Nihon Genshiryoku Gakkai Wabun Rombunshi, 7(1), p.58 - 65, 2008/03

Water electrolysis utilizing sulfur dioxide is attractive for low electricity consumption hydrogen production and has been investigated for the electrolytic and thermo-chemical hybrid hydrogen production process utilizing the heat generation of nuclear power plant. In this study, hydrogen production performance of water electrolysis cell utilizing sulfur dioxide gas and sulfur dioxide cross-over prevention performance of several polymer electrolytes were investigated experimentally.

JAEA Reports

A Preliminary experimental analysis of the BIZET program; Planning and an alysis of control rod experiment

Matsushima, Hidesuke*; Tsutsumi, Kiyoshi*; Kato, Yasuyoshi*; Urushihara, Hiroshi*; Ueda, Yasuyuki*

PNC TJ202 76-01, 151 Pages, 1976/05

PNC-TJ202-76-01.pdf:6.82MB
PNC-TJ202-76-01VOL1.pdf:2.76MB

no abstracts in English

Oral presentation

Investigation on water history using deuterium fuel cell

Koizumi, Satoshi; Putra, A.; Zhao, Y.; Noda, Yohei; Yamaguchi, Daisuke; Ueda, Satoru*; Gunji, Hiroyuki*; Eguchi, Mika*; Tsutsumi, Yasuyuki*

no journal, , 

In order to investigate water history during fuel cell operation, we employed deuterated gas (D$$_{2}$$) as a fuel (deuterium fuel cell). With exchange of H$$_{2}$$ and D$$_{2}$$, we aim to perform a contrast variation as for polyelectrolyte film (Nafion). When D$$_{2}$$ gas is used as a fuel, D$$_{2}$$O is produced at the cathode and diffuses back to the film. Then the film, originally swollen by H$$_{2}$$O, exhibits change of coherent scattering contrast. By changing a fuel gas from H$$_{2}$$ to D$$_{2}$$, SANS quantitatively detected decrease of scattering intensity at scattering maximum originating from the ion-channel in the electrolyte. After quantitative analyses on scattering intensity, which is related to water ratio (H$$_{2}$$O/D$$_{2}$$O) in the ion channel, we could determine the water ration swelling a membrane.

5 (Records 1-5 displayed on this page)
  • 1