Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 2468

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Atomistic modeling of hardening in spinodally-decomposed Fe-Cr binary alloys

Suzudo, Tomoaki; Takamizawa, Hisashi; Nishiyama, Yutaka; Caro, A.*; Toyama, Takeshi*; Nagai, Yasuyoshi*

Journal of Nuclear Materials, 540, p.152306_1 - 152306_10, 2020/11

Spinodal decomposition in thermally aged Fe-Cr alloys leads to significant hardening, which is the direct cause of the so-called 475C-embrittlement. To illustrate how spinodal decomposition induces hardening by atomistic interactions, we conducted a series of numerical simulations as well as reference experiments. The numerical results indicated that the hardness scales linearly with the short-range order (SRO) parameter, while the experimental result reproduced this relationship within statistical error. Both seemingly suggest that neighboring Cr-Cr atomic pairs essentially cause hardening, because SRO is by definition uniquely dependent on the appearance probability of such pairs. A further numerical investigation supported this notion, as it suggests that the dominant cause of hardening is the pinning effect of dislocations passing over such Cr-Cr pairs.

Journal Articles

Hydrogen trapping in Mg$$_2$$Si and Al$$_7$$FeCu$$_2$$ intermetallic compounds in aluminum alloy; First-principles calculations

Yamaguchi, Masatake; Tsuru, Tomohito; Ebihara, Kenichi; Itakura, Mitsuhiro; Matsuda, Kenji*; Shimizu, Kazuyuki*; Toda, Hiroyuki*

Materials Transactions, 61(10), p.1907 - 1911, 2020/10

no abstracts in English

Journal Articles

Local structure of rare earth elements (REE) in marine ferromanganese oxides by extended X-ray absorption fine structure and its comparison with REE in ion-adsorption type deposits

Nagasawa, Makoto*; Qin, H.-B.*; Yamaguchi, Akiko; Takahashi, Yoshio*

Chemistry Letters, 49(8), p.909 - 911, 2020/08

 Times Cited Count:0 Percentile:100(Chemistry, Multidisciplinary)

Journal Articles

Seven-year temporal variation of caesium-137 discharge inventory from the port of Fukushima Daiichi Nuclear Power Plant; Continuous monthly estimation of caesium-137 discharge in the period from April 2011 to June 2018

Machida, Masahiko; Yamada, Susumu; Iwata, Ayako; Otosaka, Shigeyoshi; Kobayashi, Takuya; Watanabe, Masahisa; Funasaka, Hideyuki; Morita, Takami*

Journal of Nuclear Science and Technology, 57(8), p.939 - 950, 2020/08

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

After direct discharges of highly contaminated water of the Fukushima Daiichi Nuclear Power Plant (1F) from April to May 2011, Kanda suggested that relatively small amounts of run-off of radionuclides from the 1F port into the Fukushima coastal region subsequently continued by his estimation method. However, the estimation period was limited to up to September 2012. Therefore, this paper estimates the discharge inventory up to June 2018. In the missing period, the Japanese government and Tokyo Electric Power Company Holdings have continued efforts to stop the discharge, and consequently, the radionuclide concentration in seawater inside the 1F port has gradually diminished. We show the monthly discharge inventory of $$^{137}$$Cs up to June 2018 by two methods, i.e., Kanda method partially improved by the authors and a more sophisticated method using Voronoi tessellation reflecting the increase in the number of monitoring points inside the 1 F port. The results show that the former always yields overestimated results compared with the latter, but the ratio of the former to the latter is less than one order of magnitude. Using these results, we evaluate the impact of the discharge inventory from the 1F port into the coastal area and radiation dose upon fish ingestion.

Journal Articles

Improvement in interactive remote in situ visualization using SIMD-aware function parser and asynchronous data I/O

Kawamura, Takuma; Idomura, Yasuhiro

Journal of Visualization, 23(4), p.695 - 706, 2020/08

 Times Cited Count:0 Percentile:100(Computer Science, Interdisciplinary Applications)

An in-situ visualization system based on the particle-based volume rendering offers a highly scalable and flexible visual analytics environment based on multivariate volume rendering. Although it showed excellent computational performance on the conventional CPU platforms, accelerated computation on the latest many core platforms revealed performance bottlenecks related to a function parser and particles I/O. In this paper, we develop a new SIMD-aware function parser and an asynchronous data I/O method based on task-based thread parallelization. Numerical experiments on the Oakforest-PACS, which consists of 8208 Intel Xeon Phi7250 (Knights Landing) processors, demonstrate an order of magnitude speedup with keeping improved strong scaling up to $$sim$$ 100 k cores.

Journal Articles

${it In situ}$ WB-STEM observation of dislocation loop behavior in reactor pressure vessel steel during post-irradiation annealing

Du, Y.*; Yoshida, Kenta*; Shimada, Yusuke*; Toyama, Takeshi*; Inoue, Koji*; Arakawa, Kazuto*; Suzudo, Tomoaki; Milan, K. J.*; Gerard, R.*; Onuki, Somei*; et al.

Materialia, 12, p.100778_1 - 100778_10, 2020/08

In order to ensure the integrity of the reactor pressure vessel in the long term, it is necessary to understand the effects of irradiation on the materials. In this study, irradiation-induced dislocation loops were observed in neutron-irradiated reactor pressure vessel specimens during annealing using our newly developed WB-STEM. It was confirmed that the proportion of $$<100>$$ loops increased with increasing annealing temperature. We also succeeded in observing the phenomenon that two $$frac{1}{2}$$$$<111>$$ loops collide into a $$<100>$$ loop. Moreover, a phenomenon in which dislocation loops decorate dislocations was also observed, and the mechanism was successfully explained by molecular dynamics simulation.

Journal Articles

Self-organization of zonal flows and isotropic eddies in toroidal electron temperature gradient driven turbulence

Kawai, Chika*; Idomura, Yasuhiro; Ogawa, Yuichi*; Yamada, Hiroshi*

Physics of Plasmas, 27(8), p.082302_1 - 082302_11, 2020/08

 Times Cited Count:0

Self-organization in the toroidal electron temperature gradient driven (ETG) turbulence is investigated based on a global gyrokinetic model in a weak magnetic shear configuration. Because of global profile effects, toroidal ETG modes with higher toroidal mode number n are excited at the outer magnetic surfaces, leading to strong linear wave dispersion. The resulting anisotropic wave turbulence boundary and the inverse energy cascade generate the self-organization of zonal flows, which is the unique mechanism in the global gyrokinetic model. The self-organization is confirmed both in the decaying turbulence initialized by random noises and in the toroidal ETG turbulence. It is also shown that the self-organization process generates zonal flows and isotropic eddies depending on a criterion parameter, which is determined by the ion to electron temperature ratio and the turbulence intensity.

Journal Articles

Sparse modeling approach to obtaining the shear viscosity from smeared correlation functions

Ito, Etsuko*; Nagai, Yuki

Journal of High Energy Physics (Internet), 2020(7), p.7_1 - 7_31, 2020/07

 Times Cited Count:0 Percentile:100

no abstracts in English

Journal Articles

Self-learning hybrid Monte Carlo; A First-principles approach

Nagai, Yuki; Okumura, Masahiko; Kobayashi, Keita*; Shiga, Motoyuki

Physical Review B, 102(4), p.041124_1 - 041124_6, 2020/07

 Times Cited Count:0 Percentile:100(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

First- and second-order topological superconductivity and temperature-driven topological phase transitions in the extended Hubbard model with spin-orbit coupling

Kheirkhah, M.*; Yan, Z.*; Nagai, Yuki; Marsiglio, F.*

Physical Review Letters, 125(1), p.017001_1 - 017001_8, 2020/07

 Times Cited Count:0 Percentile:100(Physics, Multidisciplinary)

no abstracts in English

Journal Articles

Ensemble wind simulation using a mesh-refined lattice Boltzmann method

Hasegawa, Yuta; Onodera, Naoyuki; Idomura, Yasuhiro

Dai-25-Kai Nippon Keisan Kogaku Koenkai Rombunshu (CD-ROM), 4 Pages, 2020/06

We developed a GPU-based CFD code using a mesh-refined lattice Boltzmann method (LBM), which enables ensemble simulations for wind and plume dispersion in urban cities. The code is tuned for Pascal or Volta GPU architectures, and is able to perform real-time wind simulations with several kilometers square region and several meters of grid resolution. We examined the developed code against the field experiment JU2003 in Oklahoma City. In the comparison, wind conditions showed good agreements, and the ensemble-averaged and maximum values of tracer concentration satisfied the factor 2 agreements.

Journal Articles

GPU-acceleration of locally mesh allocated Poisson solver

Onodera, Naoyuki; Idomura, Yasuhiro; Ali, Y.*; Shimokawabe, Takashi*; Aoki, Takayuki*

Dai-25-Kai Nippon Keisan Kogaku Koenkai Rombunshu (CD-ROM), 4 Pages, 2020/06

We have developed the stencil-based CFD code JUPITER for simulating three-dimensional multiphase flows. A GPU-accelerated Poisson solver based on the preconditioned conjugate gradient (P-CG) method with a multigrid preconditioner was developed for the JUPITER with block-structured AMR mesh. All Poisson kernels were implemented using CUDA, and the GPU kernel function is well tuned to achieve high performance on GPU supercomputers. The developed multigrid solver shows good convergence of about 1/7 compared with the original P-CG method, and $$times$$3 speed up is achieved with strong scaling test from 8 to 216 GPUs on TSUBAME 3.0.

Journal Articles

Locally mesh-refined lattice Boltzmann method for fuel debris air cooling analysis on GPU supercomputer

Onodera, Naoyuki; Idomura, Yasuhiro; Uesawa, Shinichiro; Yamashita, Susumu; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 7(3), p.19-00531_1 - 19-00531_10, 2020/06

A dry method is one of practical methods for decommissioning the TEPCO's Fukushima Daiichi Nuclear Power Station. Japan Atomic Energy Agency (JAEA) has been evaluating the air cooling performance of the fuel debris by using the JUPITER code based on an incompressible fluid model and the CityLBM code based on the lattice Boltzmann method (LBM). However, these codes were based on a uniform Cartesian grid system, and required large computational time and cost to capture complicated debris structures. We develop an adaptive mesh refinement (AMR) version of the CityLBM code on GPU based supercomputers and apply it to thermal-hydrodynamics problems. The proposed method is validated against free convective heat transfer experiments at JAEA. It is also shown that the AMR based CityLBM code on 4 NVIDIA TESLA V100GPUs gives 6.7x speedup of the time to solution compared with the JUPITER code on 36 Intel Xeon E5-2680v3 CPUs.

JAEA Reports

Investigation of the function of RPA software and examination of its application to JAEA's work

Kimura, Hideo; Takita, Hayato

JAEA-Technology 2020-002, 50 Pages, 2020/05

JAEA-Technology-2020-002.pdf:5.03MB

Japan Atomic Energy Agency is strongly promoting business process re-engineering (BPR) of the entire organization in order to achieve more efficient, centralized and IT-style work. As part of this BPR, we have been studying the introduction of robotic process automation (RPA), which has been making remarkable progress in recent years, in order to further streamline and improve efficiency mainly for administrative work. In order to implement an appropriate RPA, the characteristics of each RPA software were clarified by investigating the functions of major RPA software and developing sample robots. Furthermore, we categorized various tasks that are expected to utilize RPA software and examined the application of RPA software to each business pattern.

Journal Articles

A Large-scale aerodynamics study on bicycle racing

Aoki, Takayuki*; Hasegawa, Yuta

Jidosha Gijutsu, 74(4), p.18 - 23, 2020/04

Aerodynamics studies for bicycle racings have been carried out by using a CFD simulation based on LES model. For running of alone cyclist and 2-4 cyclists groups, the computational drags are in good agreement with the wind-tunnel experiments. Different shapes of group running and competing two teams are studied. A large-scale computation for a group of 72 cyclists has been performed by using 2.23 billion meshes on a GPU supercomputer.

Journal Articles

Nuclear quantum effect for hydrogen adsorption on Pt(111)

Yan, L.*; Yamamoto, Yoshiyuki*; Shiga, Motoyuki; Sugino, Osamu*

Physical Review B, 101(16), p.165414_1 - 165414_9, 2020/04

Nuclear quantum effect and many-body interaction importantly interplay in the hydrogen on the Pt(111) system under the high coverage conditions of electrochemical interest, as revealed by our ab initio path integral and ring polymer molecular dynamics simulations done at room temperature. At the full monolayer coverage, hydrogen atoms are close-packed either at the atop sites or the fcc sites owing to their strong repulsion and the nearly degenerate nature of the adsorption sites. While at the 2/3 monolayer, they are delocalized over the fcc and hcp sites via the bridge sites because of the hopping. The quantum many-body effect is thus crucially important in determining the coverage dependence and provides a clue for reconciling the long-standing controversy on this system.

Journal Articles

Overlapping communications in gyrokinetic codes on accelerator-based platforms

Asahi, Yuichi*; Latu, G.*; Bigot, J.*; Maeyama, Shinya*; Grandgirard, V.*; Idomura, Yasuhiro

Concurrency and Computation; Practice and Experience, 32(5), p.e5551_1 - e5551_21, 2020/03

 Times Cited Count:0 Percentile:100(Computer Science, Software Engineering)

Two five-dimensional gyrokinetic codes GYSELA and GKV were ported to the modern accelerators, Xeon Phi KNL and Tesla P100 GPU. Serial computing kernels of GYSELA on KNL and GKV on P100 GPU were respectively 1.3x and 7.4x faster than those on a single Skylake processor. Scaling tests of GYSELA and GKV were respectively performed from 16 to 512 KNLs and from 32 to 256 P100 GPUs, and data transpose communications in semi-Lagrangian kernels in GYSELA and in convolution kernels in GKV were found to be main bottlenecks, respectively. In order to mitigate the communication costs, pipeline-based and task-based communication overlapping were implemented in these codes.

Journal Articles

Majorana corner flat bands in two-dimensional second-order topological superconductors

Kheirkhah, M.*; Nagai, Yuki; Chen, C.*; Marsiglio, F.*

Physical Review B, 101(10), p.104502_1 - 104502_9, 2020/03

 Times Cited Count:2 Percentile:9.88(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Self-learning Monte Carlo method with Behler-Parrinello neural networks

Nagai, Yuki; Okumura, Masahiko; Tanaka, Akinori*

Physical Review B, 101(11), p.115111_1 - 115111_12, 2020/03

 Times Cited Count:1 Percentile:25.26(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Monte Carlo radiation transport modelling of the current-biased kinetic inductance detector

Malins, A.; Machida, Masahiko; Vu, TheDang; Aizawa, Kazuya; Ishida, Takekazu*

Nuclear Instruments and Methods in Physics Research A, 953, p.163130_1 - 163130_7, 2020/02

 Times Cited Count:2 Percentile:6.04(Instruments & Instrumentation)

2468 (Records 1-20 displayed on this page)