Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 43

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Establishment of experimental system for $$^{99}$$Mo/$$^{99m}$$Tc production by neutron activation method

Ishida, Takuya; Shiina, Takayuki*; Ota, Akio*; Kimura, Akihiro; Nishikata, Kaori; Shibata, Akira; Tanase, Masakazu*; Kobayashi, Masaaki*; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.

JAEA-Technology 2015-030, 42 Pages, 2015/11

JAEA-Technology-2015-030.pdf:4.82MB

The research and development (R&D) on the production of $$^{99}$$Mo/$$^{99m}$$Tc by neutron activation method ((n, $$gamma$$) method) using JMTR has been carried out in the Neutron Irradiation and Testing Reactor Center. The specific radioactivity of $$^{99}$$Mo by (n, $$gamma$$) method is extremely low compared with that by fission method ((n,f) method), and as a result, the radioactive concentration of the obtained $$^{99m}$$Tc solution is also lowered. To solve the problem, we propose the solvent extraction with methyl ethyl ketone (MEK) for recovery of $$^{99m}$$Tc from $$^{99}$$Mo produced by (n, $$gamma$$) method. We have developed the $$^{99}$$Mo/$$^{99m}$$Tc separation/extraction/concentration devices and have carried out the performance tests for recovery of $$^{99m}$$Tc from $$^{99}$$Mo produced by (n, $$gamma$$) method. In this paper, in order to establish an experimental system for $$^{99}$$Mo/$$^{99m}$$Tc production, the R&D results of the system are summarized on the improvement of the devices for high-recovery rate of $$^{99m}$$Tc, on the dissolution of the pellets, which is the high-density molybdenum trioxide (MoO$$_{3}$$) pellets irradiated in Kyoto University Research Reactor (KUR), on the production of $$^{99m}$$Tc, and on the inspection of the recovered $$^{99m}$$Tc solutions.

Journal Articles

Mechanism of $$^{99}$$Mo adsorption and $$^{rm 99m}$$Tc elution from zirconium-based material in $$^{99}$$Mo/$$^{rm 99m}$$Tc generator column using neutron-irradiated natural molybdenum

Awaludin, R.*; Gunawan, A. H.*; Lubis, H.*; Sriyono*; Herlina*; Mutalib, A.*; Kimura, Akihiro; Tsuchiya, Kunihiko; Tanase, Masakazu*; Ishihara, Masahiro

Journal of Radioanalytical and Nuclear Chemistry, 303(2), p.1481 - 1483, 2015/02

 Times Cited Count:5 Percentile:34.97(Chemistry, Analytical)

In this study, the $$^{99}$$Mo adsorption and $$^{rm 99m}$$Tc elution mechanism were investigated using SEM-EDS to analyze the elemental composition of the material surfaces before Mo adsorption, after Mo adsorption and after $$^{rm 99m}$$Tc elution using saline solution. The results were compared with the value of adsorption capacity of the material to irradiated natural Mo and elution yield of $$^{rm 99m}$$Tc. From the changes of elemental composition in the surface, it was found that molybdate ions were adsorbed into the adsorbent by ion exchange with Cl$$^{-}$$ ion in the material. On the other hand, it was also revealed that $$^{rm 99m}$$Tc can be eluted from the material column in TcO$$_{4}$$$$^{-}$$ since oxidizing agent was needed in the elution process.

JAEA Reports

Fabrication technology development and characterization of irradiation targets for $$^{99}$$Mo/$$^{99m}$$Tc production by (n,$$gamma$$) method

Nishikata, Kaori; Kimura, Akihiro; Ishida, Takuya; Shiina, Takayuki*; Ota, Akio*; Tanase, Masakazu*; Tsuchiya, Kunihiko

JAEA-Technology 2014-034, 34 Pages, 2014/10

JAEA-Technology-2014-034.pdf:3.26MB

As a part of utilization expansion after the Japan Material Testing Reactor (JMTR) re-start, research and development (R&D) on the production of medical radioisotope $$^{99}$$Mo/$$^{99m}$$Tc by (n, $$gamma$$) method using JMTR has been carried out in the Neutron Irradiation and Testing Reactor Center of the Japan Atomic Energy Agency. $$^{99}$$Mo is usually produced by fission method. On the other hand, $$^{99}$$Mo/$$^{99m}$$Tc production by the (n, $$gamma$$) method has advantages for radioactive waste, cost reduction and non-proliferation. However, the specific radioactivity per unit volume by the (n, $$gamma$$) method is low compared with the fission method, and that is the weak point of the (n, $$gamma$$) method. This report summarizes the investigation of raw materials, the fabrication tests of high-density MoO$$_{3}$$ pellets by the plasma sintering method for increasing of $$^{98}$$Mo contents and the characterization of sintered high-density MoO$$_{3}$$ pellets.

Journal Articles

Development for production of $$^{177}$$Lu and $$^{186}$$Re, $$^{188}$$Re using a research reactor

Hashimoto, Kazuyuki; Fujisaki, Saburo*

Hoshasen To Sangyo, (136), p.17 - 21, 2014/06

no abstracts in English

Journal Articles

Development of $$^{99m}$$Tc production from (n,$$gamma$$)$$^{99}$$Mo based on solvent extraction

Kimura, Akihiro; Awaludin, R.*; Shiina, Takayuki*; Tanase, Masakazu*; Kawauchi, Yukimasa*; Gunawan, A. H.*; Lubis, H.*; Sriyono*; Ota, Akio*; Genka, Tsuguo; et al.

Proceedings of 3rd Asian Symposium on Material Testing Reactors (ASMTR 2013), p.109 - 115, 2013/11

JP, 2011-173260   Patent publication (In Japanese)

$$^{99m}$$Tc is generated by decay of $$^{99}$$Mo. Production of $$^{99}$$Mo is carried out by (n,f) method with high enriched uranium targets, and the production are currently producing to meet about 95% of global supply. Recently, it is difficult to carry out a stable supply for some problems such as aging of reactors etc. Furthermore, the production has difficulties in nuclear proliferation resistance etc. Thus, (n,$$gamma$$) method has lately attracted considerable attention. The (n,$$gamma$$) method has several advantages, but the extremely low specific activity makes its uses less convenient than (n,f) method. We proposed a method based on the solvent extraction, followed by adsorption of $$^{99m}$$Tc with alumina column. In this paper, a practical production of $$^{99m}$$Tc was tried by the method with 1Ci of $$^{99}$$Mo produced in MPR-30. The recovery yields were approximately 70%. Impurity of $$^{99}$$Mo was less than 4.0$$times$$10$$^{-5}$$% and the radiochemical purity was over 99.2%.

Journal Articles

Preparation of polymer gel dosimeters based on less toxic monomers and gellan gum

Hiroki, Akihiro; Sato, Yuichi*; Nagasawa, Naotsugu; Ota, Akio*; Seito, Hajime; Yamabayashi, Hisamichi*; Yamamoto, Takayoshi*; Taguchi, Mitsumasa; Tamada, Masao; Kojima, Takuji

Physics in Medicine and Biology, 58(20), p.7131 - 7141, 2013/10

 Times Cited Count:15 Percentile:32.48(Engineering, Biomedical)

Journal Articles

$$^{99}$$Mo-$$^{rm 99m}$$Tc production process by (n,$$gamma$$) reaction with irradiated high-density MoO$$_{3}$$ pellets

Tsuchiya, Kunihiko; Nishikata, Kaori; Tanase, Masakazu*; Shiina, Takayuki*; Ota, Akio*; Kobayashi, Masaaki*; Yamamoto, Asaki*; Morikawa, Yasumasa*; Takeuchi, Nobuhiro*; Kaminaga, Masanori; et al.

Proceedings of 6th International Symposium on Material Testing Reactors (ISMTR-6) (Internet), 9 Pages, 2013/10

no abstracts in English

Journal Articles

Development of $$^{99m}$$Tc production from (n,$$gamma$$)$$^{99}$$Mo based on solvent extraction and column chromatography

Kimura, Akihiro; Awaludin, R.*; Shiina, Takayuki*; Tanase, Masakazu*; Kawauchi, Yukimasa*; Gunawan, A. H.*; Lubis, H.*; Sriyono*; Ota, Akio*; Genka, Tsuguo; et al.

Proceedings of 6th International Symposium on Material Testing Reactors (ISMTR-6) (Internet), 7 Pages, 2013/10

JP, 2011-173260   Patent publication (In Japanese)

This research is development of $$^{99m}$$Tc production. $$^{99m}$$Tc is generated by decay of $$^{99}$$Mo. The supply of $$^{99}$$Mo in Japan depends entirely on the import from foreign countries. Thus, it is needed to supply $$^{99}$$Mo stably by the domestic manufacturing. A practical production of $$^{99m}$$Tc was tried by the method with 1 Ci of $$^{99}$$Mo produced in MPR-30. The results showed that the recovery yields were approximately 70%. The concentration of the product obtained was estimated to be corresponding to about 30 GBq (800 mCi)/ml when 150g of MoO$$_{3}$$ was irradiated for 5 days in MPR-30. Impurity of $$^{99}$$Mo was less than 4.4$$times$$10$$^{-5}$$%, which was lower than that of Japanese tentative regulation criteria. The radiochemical purity was higher than 99.8% that cleared the tentative regulation (95%) of Japan.

Journal Articles

New polymer gel dosimeters consisting of less toxic monomers with radiation-crosslinked gel matrix

Hiroki, Akihiro; Yamashita, Shinichi; Sato, Yuichi*; Nagasawa, Naotsugu; Taguchi, Mitsumasa

Journal of Physics; Conference Series, 444, p.012028_1 - 012028_4, 2013/06

 Times Cited Count:7 Percentile:6.69

Polymer gel dosimeters consisting of less toxic methacrylate-type monomers such as 2-hydroxyethyl methacrylate (HEMA) and polyethylene glycol 400 dimethacrylate (9G) with hydroxypropyl cellulose (HPC) gel were prepared. We investigated the effect of monomer compositions on the dose response of the polymer gel dosimeter. The HPC gels as a matrix for the polymer gel dosimeter were obtained by electron beam irradiation to 20wt% of HPC aqueous solution. The dried HPC gels were immersed into mixed monomer solutions, and then the swollen gels were vacuum-packed to prepare the polymer gel dosimeters. The polymer gel dosimeters showed cloudiness by exposing to $$^{60}$$Co $$gamma$$-ray, in which the cloudiness increased with the dose up to 10 Gy. At the same dose, the increase in the cloudiness appeared with increasing concentration of 9G. It was found that the dose response depended on the composition ratio between HEMA and 9G.

Journal Articles

Dose-response measurement in gel dosimeter using various imaging modalities

Fujibuchi, Toshio*; Kawamura, Taku*; Yamanashi, Koichi*; Hiroki, Akihiro; Yamashita, Shinichi*; Taguchi, Mitsumasa; Sato, Yuichi*; Mimura, Koichi*; Ushiba, Hiroaki*; Okihara, Toru*

Journal of Physics; Conference Series, 444(1), p.012089_1 - 012089_4, 2013/06

 Times Cited Count:3 Percentile:17.84

Journal Articles

Fabrication and characterization of high-density MoO$$_{3}$$ pellets

Nishikata, Kaori; Kimura, Akihiro; Shiina, Takayuki*; Ota, Akio*; Tanase, Masakazu*; Tsuchiya, Kunihiko

Proceedings of 2012 Powder Metallurgy World Congress & Exhibition (PM 2012) (CD-ROM), 8 Pages, 2013/02

The renewed Japan Materials Testing Reactor (JMTR) will be started from 2012, and it is expected to contribute to many nuclear fields. Especially, in case of Japan, the supplying of $$^{99}$$Mo depends on imports from foreign countries. Japan Atomic Energy Agency (JAEA) has a plan to produce $$^{99}$$Mo, which is the parent nuclide of radiopharmaceutical $$^{rm 99m}$$Tc, and JAEA has performed the R&D for $$^{99}$$Mo production by (n,$$gamma$$) method in JMTR. Generally, molybdenum oxide (MoO$$_{3}$$) is the most popular chemical form as irradiation target for the $$^{99}$$Mo production. However, the $$^{99}$$Mo production capacity is low because of low (n,$$gamma$$) cross section and isotope composition of $$^{98}$$Mo in Mo. Thus, it is necessary to fabricate the MoO$$_{3}$$ pellets with high density for the increase of the $$^{99}$$Mo production amount. In this study, MoO$$_{3}$$ pellets fabricated by a plasma activated sintering were developed and characterization of MoO$$_{3}$$ pellets was carried out.

Journal Articles

Problems in clinical practice of domestic supply of $$^{99}$$Mo/$$^{rm 99m}$$Tc; Development of $$^{99}$$Mo/$$^{rm 99m}$$Tc production using accelerator neutrons

Nagai, Yasuki

Radioisotopes, 61(12), p.619 - 624, 2012/12

A new method was proposed to produce $$^{99}$$Mo by the $$^{100}$$Mo(n,2n)$$^{99}$$Mo reaction using intense neutrons from an accelerator by us. About 20% of the demand of $$^{99}$$Mo in Japan could be obtained constantly by the proposed method. In fact, we have shown that the produced $$^{99}$$Mo contained very little RI impurity and the radionuclide purity of $$^{rm 99m}$$Tc separated from $$^{99}$$Mo by sublimation and the labeling efficiency of $$^{rm 99m}$$Tc-MDP exceed the United States Pharmacopeia requirements for a fission product, $$^{99}$$Mo. We expect that the present $$^{99}$$Mo production method will be accepted worldwide to ensure the constant domestic supply of $$^{99}$$Mo.

Journal Articles

Development of $$^{rm 99m}$$Tc production from (n, $$gamma$$) $$^{99}$$Mo

Tanase, Masakazu*; Shiina, Takayuki*; Kimura, Akihiro; Nishikata, Kaori; Fujisaki, Saburo*; Ota, Akio*; Kobayashi, Masaaki*; Yamamoto, Asaki*; Kawauchi, Yukimasa*; Tsuchiya, Kunihiko; et al.

Proceedings of 5th International Symposium on Material Testing Reactors (ISMTR-5) (Internet), 9 Pages, 2012/10

$$^{rm 99m}$$Tc is used as a radiopharmaceutical and manufactured from the parent nuclide of $$^{99}$$Mo. Extraction method of $$^{rm 99m}$$Tc from (n, $$gamma$$) $$^{99}$$Mo have been developed, as a part of the industrial use expansion after JMTR will re-start. In this research, the method proposed would be applicable to a practical production of $$^{rm 99m}$$Tc obtained from (n, $$gamma$$) $$^{99}$$Mo in large quantities. The method proposed would be applicable to a practical production of $$^{rm 99m}$$Tc obtained from (n, $$gamma$$) $$^{99}$$Mo in large quantities.

Journal Articles

Development of $$^{99}$$Mo-$$^{rm 99m}$$Tc domestic production with high-density MoO$$_{3}$$ pellets by (n,$$gamma$$) reaction

Tsuchiya, Kunihiko; Tanase, Masakazu*; Takeuchi, Nobuhiro*; Kobayashi, Masaaki*; Hasegawa, Yoshio*; Yoshinaga, Hideo*; Kaminaga, Masanori; Ishihara, Masahiro; Kawamura, Hiroshi

Proceedings of 5th International Symposium on Material Testing Reactors (ISMTR-5) (Internet), 10 Pages, 2012/10

As one of effective uses of the JMTR, JAEA has a plan to produce $$^{99}$$Mo by (n, $$gamma$$) method, a parent nuclide of $$^{rm 99m}$$Tc. In case of Japan, the supplying of $$^{99}$$Mo depends only on imports from foreign countries. The R&D on production method of $$^{99}$$Mo -$$^{rm 99m}$$Tc has been performed with Japanese industrial users under the cooperation programs. The main R&D items for the production are (1) Fabrication of irradiation target such as the sintered MoO$$_{3}$$ pellets, (2) Separation and concentration of $$^{rm 99m}$$Tc by the solvent extraction from Mo solution, (3) Examination of $$^{rm 99m}$$Tc solution for a medicine, and (4) Mo recycling from Mo generator and solution. In this paper, the status of the R&D is introduced for the production of $$^{99}$$Mo -$$^{rm 99m}$$Tc.

Journal Articles

Fabrication development of high-density MoO$$_{3}$$ pellets for (n, $$gamma$$) $$^{99}$$Mo production

Nishikata, Kaori; Kimura, Akihiro; Tsuchiya, Kunihiko; Suzuki, Kunihiko*; Akiyama, Hiroaki*; Nagakura, Masaaki*; Kawauchi, Yukimasa*; Tanase, Masakazu*

Proceedings of 5th International Symposium on Material Testing Reactors (ISMTR-5) (Internet), 9 Pages, 2012/10

In this study, experimental fabrication tests of the high-density MoO$$_{3}$$ pellets were carried out by the Plasma Activated Sintering (PAS) method, which requires relatively lower temperature and shorter time to fabricate the pellets. From the results, the PAS method combined with oxidation process, prior to dissolution into sodium hydroxide solution, is a useful measure to fabricate high-density MoO$$_{3}$$ Pellets for the future domestic production of $$^{rm 99m}$$Tc. The irradiation tests and characterization with these pellets will be carried out under the international cooperation.

JAEA Reports

Conceptual design of multipurpose compact research reactor; Annual report FY2010 (Joint research)

Imaizumi, Tomomi; Miyauchi, Masaru; Ito, Masayasu; Watahiki, Shunsuke; Nagata, Hiroshi; Hanakawa, Hiroki; Naka, Michihiro; Kawamata, Kazuo; Yamaura, Takayuki; Ide, Hiroshi; et al.

JAEA-Technology 2011-031, 123 Pages, 2012/01

JAEA-Technology-2011-031.pdf:16.08MB

The number of research reactors in the world is decreasing because of their aging. However, the planning to introduce the nuclear power plants is increasing in Asian countries. In these Asian countries, the key issue is the human resource development for operation and management of nuclear power plants after constructed them, and also the necessity of research reactor, which is used for lifetime extension of LWRs, progress of the science and technology, expansion of industry use, human resources training and so on, is increasing. From above backgrounds, the Neutron Irradiation and Testing Reactor Center began to discuss basic concept of a multipurpose low-power research reactor for education and training, etc. This design study is expected to contribute not only to design tool improvement and human resources development in the Neutron Irradiation and Testing Reactor Center but also to maintain and upgrade the technology on research reactors in nuclear power-related companies. This report treats the activities of the working group from July 2010 to June 2011 on the multipurpose low-power research reactor in the Neutron Irradiation and Testing Reactor Center and nuclear power-related companies.

Journal Articles

Journal Articles

Development of high density MoO$$_{3}$$ pellets for production of $$^{99}$$Mo medical isotope

Kimura, Akihiro; Sato, Yuichi*; Tanase, Masakazu*; Tsuchiya, Kunihiko

IOP Conference Series; Materials Science and Engineering, 18(4), p.042001_1 - 042001_4, 2011/10

In the medical field, the radioisotopes are indispensable. Especially, $$^{99m}$$Tc is most commonly used as a radiopharmaceutical. However, the supply of $$^{99}$$Mo in Japan depends fully on the import from foreign countries. JMTR has a plan to produce a medical isotope of $$^{99}$$Mo, the parent nuclide of $$^{99m}$$Tc by the (n,$$gamma$$) method and a part of the import volume can be covered of the home country. In this plan, it is important to develop the production method of the irradiation targets such as the Molybdenum oxide (MoO$$_{3}$$) pellets. However, MoO$$_{3}$$ is low sublime temperature and it is difficult to produce the pellets with high density. In this study, MoO$$_{3}$$ pellets were produced by two kinds of production methods. As a result, MoO$$_{3}$$ pellet of about 70% TD was obtained by CIP and MoO$$_{3}$$ pellet of over 95% TD was obtained by SPS.

JAEA Reports

Feasibility study of sublimation type $$^{99m}$$Tc master-milker; Comparison with PZC based wet method

Ishitsuka, Etsuo; Yamabayashi, Hisamichi*; Tanase, Masakazu*; Fujisaki, Saburo*; Sato, Norihito*; Hori, Naohiko; Awaludin, R.*; Gunawan, A. H.*; Lubis, H.*; Mutalib, A.*

JAEA-Technology 2011-019, 18 Pages, 2011/06

JAEA-Technology-2011-019.pdf:2.61MB

Feasibility study of sublimation type $$^{99m}$$Tc master-milker was carried out as a $$^{99}$$Mo/$$^{99m}$$T production development with the JMTR. As the feasibility study, the experimental equipment for sublimation method and wet method with PZC based $$^{99m}$$Tc solution were tentatively manufactured, and their properties as the master-milker were investigated by comparing two methods with each other. As a result, it was found that the $$^{99m}$$Tc recovery rate and process time of the sublimation method were about 80% and 1.5 hour, respectively, and the similar values were observed with the wet method. Superior points of the sublimation method are easier operation and reusability of the used MoO$$_{3}$$ comparing with the wet method. On the other hand, disadvantageous point is that the $$^{99m}$$Tc recovery rate decreases with the increase of treating amount of MoO$$_{3}$$.

JAEA Reports

Development of $$^{rm 99m}$$Tc extraction techniques from $$^{99}$$Mo by (n,$$gamma$$) reaction

Kimura, Akihiro; Hori, Naohiko; Tsuchiya, Kunihiko; Ishihara, Masahiro; Yamabayashi, Hisamichi*; Tanase, Masakazu*; Fujisaki, Saburo*; Sato, Yuichi*

JAEA-Review 2010-053, 23 Pages, 2010/11

JAEA-Review-2010-053.pdf:2.52MB

Production techniques of $$^{99}$$Mo, parent nuclide of $$^{rm 99m}$$Tc, have been developed for the industrial utilization as medical diagnosis medicine after the JMTR refurbishment. The (n,$$gamma$$) method is proposed in JMTR because of low-amount radioactive wastes and easy $$^{rm 99m}$$Tc production process. In this study, the production of the high-density MoO$$_{3}$$ pellet and concentration techniques of $$^{rm 99m}$$Tc solution were developed. As the trial test, the MoO$$_{3}$$ pellets with high density were produced by the SPS (Spark Plasma Sintering) method. On the other hands, it was possible to concentrate $$^{rm 99m}$$Tc solution by the solvent extraction using Methyl Ethyl Ketone (MEK). From the result, the $$^{rm 99m}$$Tc concentrating device with more than 80% concentration efficiency, was performed successfully.

43 (Records 1-20 displayed on this page)