Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Johansen, M. P.*; Gwynn, J. P.*; Carpenter, J. G.*; Charmasson, S.*; Mori, Airi; Orr, B.*; Simon-Cornu, M.*; Osvath, I.*; McGinnity, P.*
Journal of Environmental Radioactivity, 287, p.107706_1 - 107706_8, 2025/07
Times Cited Count:0Birkholzer, J. T.*; Graupner, B. J.*; Harrington, J.*; Jayne, R.*; Kolditz, O.*; Kuhlman, K. L.*; LaForce, T.*; Leone, R. C.*; Mariner, P. E.*; McDermott, C.*; et al.
Geomechanics for Energy and the Environment, 42, p.100685_1 - 100685_17, 2025/06
Sugita, Yutaka; Ono, Hirokazu; Beese, S.*; Pan, P.*; Kim, M.*; Lee, C.*; Jove-Colon, C.*; Lopez, C. M.*; Liang, S.-Y.*
Geomechanics for Energy and the Environment, 42, p.100668_1 - 100668_21, 2025/06
The international cooperative project DECOVALEX 2023 focused on the Horonobe EBS experiment in the Task D, which was undertaken to study, using numerical analyses, the thermo-hydro-mechanical (or thermo-hydro) interactions in bentonite based engineered barriers. One full-scale in-situ experiment and four laboratory experiments, largely complementary, were selected for modelling. The Horonobe EBS experiment is a temperature-controlled non-isothermal experiment combined with artificial groundwater injection. The Horonobe EBS experiment consists of the heating and cooling phases. Six research teams performed the THM or TH (depended on research team approach) numerical analyses using a variety of computer codes, formulations and constitutive laws.
Mori, Airi; Johansen, M. P.*; McGinnity, P.*; Takahara, Shogo
Communications Earth & Environment (Internet), 6, p.356_1 - 356_11, 2025/05
Times Cited Count:0Yamauchi, Hiroki; Metoki, Naoto; Watanuki, Ryuta*; Hong, T.*; Fernandez-Baca, J. A.*; Hagihara, Masato; Masuda, Takatsugu*; Yoshizawa, Hideki*; Ito, Shinichi*
Journal of the Physical Society of Japan, 94(5), p.054705_1 - 054705_8, 2025/04
Tanigawa, Masafumi; Seya, Kazuhito*; Asakawa, Naoya*; Hayashi, Hiroyuki*; Horigome, Kazushi; Mukai, Yasunobu; Kitao, Takahiko; Nakamura, Hironobu; Henzlova, D.*; Swinhoe, M. T.*; et al.
JAEA-Technology 2024-014, 63 Pages, 2025/02
The liquid waste treatment process generated sludge items at the plutonium conversion development facility. They are highly heterogeneous and contain large amounts of impurities (Na, Fe, Ni etc.). Therefore, the sludge items have very large sampling uncertainty and so the total measurement uncertainty is very large (approximately 24%). The plutonium scrap multiplicity counter (PSMC) measurement technique for sludge items was developed by joint research between the Japan Atomic Energy Agency (JAEA) and Los Alamos National Laboratory (LANL). The technical validity for sludge items using the PSMC was evaluated using various types of sample measurements and Monte Carlo N-Particle transport code calculations. The PSMC measurement parameters were found to be valid for use with sludge items and the validity of multiplicity analysis was confirmed and demonstrated through comparisons with standard MOX powder and a standard sludge. As a result, the PSMC measurement values were shown to be consistent and reasonable and the large amount of impurity (Fe, Ni etc.) did not impact the results. Therefore, the measurement uncertainty of the improved nuclear material accountancy (NMA) procedure by combined PSMC and high-resolution gamma spectrometry was shown to be 6.5%. In addition, an acceptance test was conducted using PSMC/HRGS and IAEA benchmark equipment. Measured Pu mass by both equipment agrees within the measurement uncertainty of each method, and so the validity for Pu mass measurement by PSMC/HRGS was confirmed. The above results confirm the applicability of PSMC/HRGS as an additional NMA method for sludge and a newly designed NDA procedure based on this study is applied to sludge for NMA in PCDF.
Jin, H.*; Choi, E. S.*; Wu, H.-C.*; Curro, N. J.*; Nawa, Kazuhiro*; Sato, Taku*; Kiyanagi, Ryoji; Ohara, Takashi; Klavins, P.*; Taufour, V.*
Physical Review B, 111(3), p.035103_1 - 035103_7, 2025/01
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Johansen, M. P.*; Gwynn, J. P.*; Carpenter, J. G.*; Charmasson, S.*; McGinnity, P.*; Mori, Airi; Orr, B.*; Simon-Cornu, M.*; Osvath, I.*
Critical Reviews in Environmental Science and Technology, 55(6), p.422 - 445, 2025/00
Times Cited Count:3 Percentile:0.00(Environmental Sciences)Oshima, Masumi*; Goto, Jun*; Hayakawa, Takehito*; Asai, Masato; Shinohara, Hirofumi*; Suzuki, Katsuyuki*; Shen, H.*
Journal of Nuclear Science and Technology, 10 Pages, 2025/00
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The spectrum determination method (SDM) is the method to determine radioactivities by analyzing full spectral shape of - or
rays through least-squares fitting by referring to standard
- and
spectra. In this paper, we have newly applied the SDM to a unified spectrum composed of two spectra measured with a Ge detector and a liquid scintillation counter. By analyzing the unified spectrum, uncertainties of deduced radioactivities have been improved. We applied this method to the unified spectrum including 40 radionuclides with equal intensities, and have deduced their radioactivities correctly.
Teshigawara, Makoto; Lee, Y.*; Tatsumoto, Hideki*; Hartl, M.*; Aso, Tomokazu; Iverson, E. B.*; Ariyoshi, Gen; Ikeda, Yujiro*; Hasegawa, Takumi*
Nuclear Instruments and Methods in Physics Research B, 557, p.165534_1 - 165534_10, 2024/12
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)At Japanese Spallation Neutron Source in J-PARC, the para-hydrogen fraction was measured by using Raman spectroscopy in-situ for an integrated beam power of 9.4 MWh at 1 MW operation, to evaluate the functionality of the ferric oxyhydroxide catalyst. This result showed that full functionality of the catalyst was retained up to the 1 MW operation. We attempted to study the effect of neutron scattering driven para to ortho-hydrogen back-conversion rate in the absence of the catalyst effect with a bypass line without catalyst. The measured increase of ortho-hydrogen fraction was 0.44% for an integrated beam power of 2.4 MW
h at 500 kW operation, however, which was considered to be due to not only to neutron collisions in cold moderators but also to the high ortho-hydrogen fraction of initially static liquid hydrogen in the bypass line and passive exudation of quasi-static hydrogen in the catalyst vessel to the main loop.
Oizumi, Akito; Fukushima, Masahiro; Gunji, Satoshi; McKenzie, G.*; Amundson, K.*
International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook (2022/23 edition) (Internet) , 313 Pages, 2024/11
This benchmark report was compiled to register a critical experiment using the lower-enriched uranium (LEU) system core to the International Criticality Safety Evaluation Project (ICSBEP). The LEU experiment was one of a series of joint experimental project with the Los Alamos Laboratory in the United States from 2015 to 2019 aimed at improving the design accuracy of the accelerator driven system (ADS). This core was loaded alternating highly-enriched uranium (HEU) and natural uranium (NU) to simulate LEU. In addition, a fast neutron spectrum system was constructed with not only HEU and NU but also lead which is part of coolant in the ADS. In this evaluation, it was clarified that the experimental uncertainty for the effective multiplication factor was almost 100 pcm. Moreover, the C/E-1 values of almost -70 pcm and -145 pcm were obtained by the calculation with the continuous energy Monte Carlo code MCNP and the nuclear data ENDF/B-VIII.0 and JENDL-4.0, respectively.
Matsuba, Kenichi; Kato, Shinya; Kamiyama, Kenji; Akaev, A. S.*; Vurim, A. D.*; Baklanov, V. V.*
Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 7 Pages, 2024/11
During a severe accident in sodium-cooled fast reactors, molten core materials could be discharged from the core region toward the lower sodium region of the reactor vessel through coolant channels, such as control rod guide tubes. Typical SFRs have a sodium plenum with limited depth and volume, such as the core inlet plenum located under the core region. Therefore, it is important to evaluate the coolability of molten core materials discharged into a depth- and volume-limited sodium plenum. In the present study, to deepen the understanding on the coolability of molten core materials discharged into such a sodium plenum, conditions under which molten core materials form solidified fragments were discussed based on an experiment discharging a molten fuel simulant (molten Al2O3) into a test vessel filled with liquid sodium.
Almaviva, S.*; Karino, Takahiro; Akaoka, Katsuaki; Wakaida, Ikuo
Spectrochimica Acta, Part B, 218, p.106960_1 - 106960_7, 2024/08
Times Cited Count:0 Percentile:0.00(Spectroscopy)Frazer, D.*; Saleh, T. A.*; Matsumoto, Taku; Hirooka, Shun; Kato, Masato; McClellan, K.*; White, J. T.*
Nuclear Engineering and Design, 423, p.113136_1 - 113136_7, 2024/07
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Nanoindentation based techniques can be employed on minute volumes of material to measure mechanical properties, including Young's modulus, hardness, and creep stress exponents. In this study, (U,Ce)O solid solutions samples are used to develop elevated temperature nanoindentation and nanoindentation creep testing methods for use on mixed oxide fuels. Nanoindentation testing was performed on 3 separate (Ux-1,Cex)O
compounds ranging from x equals 0.1 to 0.3 at up to 800
C: their Young's modulus, hardness, and creep stress exponents were evaluated. The Young's modulus decreases in the expected linear manner while the hardness decreases in the expected exponential manner. The nanoindentation creep experiments at 800
C give stress exponent values, n=4.7-6.9, that suggests dislocation motion as the deformation mechanism.
Gu, Y. Q.*; Gu, Y. M.*; Liu, F.*; Kawamura, Seiko; Murai, Naoki; Zhao, J.*
Physical Review Letters, 132(24), p.246702_1 - 246702_7, 2024/06
Times Cited Count:2 Percentile:48.32(Physics, Multidisciplinary)Rapp, L.*; Matsuoka, Takeshi*; Firestein, K. L.*; Sagae, Daisuke*; Habara, Hideaki*; Mukai, Keiichiro*; Tanaka, Kazuo*; Gamaly, E. G.*; Kodama, Ryosuke*; Seto, Yusuke*; et al.
Physical Review Research (Internet), 6(2), p.023101_1 - 023101_18, 2024/04
It is generally known that irradiating a solid surface with a laser pulse of ultra-relativistic intensity generates a plasma on the surface, which in turn creates an ultrahigh pressure inside. In this study, the crystal structure analysis of high-pressure phases generated inside silicon single-crystals irradiated by this laser was performed using the diffraction system at the Stress and Imaging apparatus of BL22XU, which is a JAEA-BL. The results obtained confirm the existence of high-pressure phases that silicon is said to possess: body-centered, rhombohedral, hexagonal, and tetragonal phases in the interior. We can get the results that the crystal structure of silicon polymorphs of being include body-centered, rhombohedral, hexagonal-diamond, tetragonal exists. In the future, we will accumulate data and apply them to control the internal structure, strength, and functionality of materials.
Shinohara, Yuya*; Iwashita, Takuya*; Nakanishi, Masahiro*; Osti, N. C.*; Kofu, Maiko; Nirei, Masami; Dmowski, W.*; Egami, Takeshi*
Journal of Physical Chemistry B, 128(6), p.1544 - 1549, 2024/02
Times Cited Count:2 Percentile:51.25(Chemistry, Physical)Yamauchi, Hiroki; Sari, D. P.*; Yasui, Yukio*; Sakakura, Terutoshi*; Kimura, Hiroyuki*; Nakao, Akiko*; Ohara, Takashi; Honda, Takashi*; Kodama, Katsuaki; Igawa, Naoki; et al.
Physical Review Research (Internet), 6(1), p.013144_1 - 013144_9, 2024/02
Zhang, A.*; Deng, K.*; Sheng, J.*; Liu, P.*; Kumar, S.*; Shimada, Kenya*; Jiang, Z.*; Liu, Z.*; Shen, D.*; Li, J.*; et al.
Chinese Physics Letters, 40(12), p.126101_1 - 126101_8, 2023/12
Times Cited Count:11 Percentile:83.08(Physics, Multidisciplinary)Oshima, Masumi*; Goto, Jun*; Hayakawa, Takehito*; Asai, Masato; Kin, Tadahiro*; Shinohara, Hirofumi*
Isotope News, (790), p.19 - 23, 2023/12
When analyzing samples that contain many radionuclides at various concentrations, such as radioactive waste or fuel debris, it is difficult to apply general spectrum analysis methods and is necessary to chemically separate each nuclide before quantifying it. The chemical separation is especially essential for analysis using a liquid scintillation counter (LSC). In this report, the authors explain the newly developed spectral determination method (SDM) in which the entire spectrum is fitted to quantify radioactivity of nuclides mixed in a sample. By applying the SDM to - and X-ray spectrum measured by LSC and
-ray spectrum measured by Ge detector simultaneously, the authors demonstrated that radioactivity of 40 radionuclides mixed in a sample at concentrations varying by two orders could be quantified, which is useful to simplify chemical separation process in radionuclide quantification.