Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Arai, Yoichi; Watanabe, So; Nakahara, Masaumi; Funakoshi, Tomomasa; Hoshino, Takanori; Takahatake, Yoko; Sakamoto, Atsushi; Aihara, Haruka; Hasegawa, Kenta; Yoshida, Toshiki; et al.
Progress in Nuclear Science and Technology (Internet), 7, p.168 - 174, 2025/05
The Japan Atomic Energy Agency (JAEA) has been conducting a project named "Systematic Treatment of RAdioactive liquid waste for Decommissioning (STRAD)" project since 2018 for fundamental and practical studies for treating radioactive liquid wastes with complicated compositions. Fundamental studies have been conducted using genuine liquid wastes accumulated in a hot laboratory of the JAEA called the Chemical Processing Facility (CPF), and treatment procedures for all liquid wastes in CPF were successfully designed on the results obtained. As the next phase of the project, new fundamental and practical studies on primarily organic liquid wastes accumulated in different facilities of JAEA are in progress. This paper reviews the representative achievements of the STRAD project and introduces an overview of ongoing studies.
Nakahara, Masaumi; Watanabe, So; Kimura, Shuya; Sasaki, Misa*; Inagaki, Hiromitsu*; Moriguchi, Tetsuji*
Progress in Nuclear Energy, 172, p.105195_1 - 105195_8, 2024/07
Times Cited Count:1 Percentile:57.00(Nuclear Science & Technology)A novel removal technique with ultrafine bubbles has been proposed for decommissioning of nuclear facilities. The performance of removal technology with ultrafine bubbles was evaluated in the removal experiments with non-radioactive materials, simulated contaminants precipitated Co oxides. To investigate the influence of difference in the chemical forms, the decontamination experiments were carried out with the fuel pin end plugs contaminated radioactive materials in a hot cell.
Warashina, Tomoro*; Sato, Asako*; Hinai, Hiroshi; Shaikhutdinov, N.*; Shagimardanova, E.*; Mori, Hiroshi*; Tamaki, Satoshi*; Saito, Motofumi*; Sanada, Yukihisa; Sasaki, Yoshito; et al.
Applied and Environmental Microbiology, 90(4), p.e02113-23_1 - e02113-23_23, 2024/04
Times Cited Count:0 Percentile:0.00(Biotechnology & Applied Microbiology)Yamada, Kazuo*; Hokora, Hideyuki*; Maruyama, Ippei*; Aihara, Haruka; Tomita, Sayuri*; Tojo, Yasumasa*; Shibuya, Kazutoshi*; Hosokawa, Yoshifumi*; Igarashi, Go*; Koma, Yoshikazu
Proceedings of Waste Management Symposia 2024 (WM2024) (Internet), 7 Pages, 2024/03
Nakahara, Masaumi; Shibata, Atsuhiro
Journal of Nuclear Science and Technology, 60(7), p.849 - 858, 2023/07
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)To develop the acid split method which has highly nuclear proliferation resistance, influence of Pu content in dissolver solutions derived from irradiated fast reactor fuel on the Pu stripping was investigated in experiments and a calculation. The Pu content in the U/Pu and U products increased with increasing the Pu content in the dissolver solution. Moreover, the calculated results indicate that the Pu leakage into the U product is suppressed with the Pu stripping solution only at low temperature.
Yamada, Kazuo*; Tojo, Yasumasa*; Aihara, Haruka; Tomita, Sayuri*; Hokora, Hideyuki*; Shibuya, Kazutoshi*; Koma, Yoshikazu; Igarashi, Go*; Hosokawa, Yoshifumi*; Maruyama, Ippei*
Proceedings of Waste Management Symposia 2023 (WM2023) (Internet), 12 Pages, 2023/02
Nakahara, Masaumi; Watanabe, So; Aihara, Haruka; Takahatake, Yoko; Arai, Yoichi; Ogi, Hiromichi*; Nakamura, Masahiro; Shibata, Atsuhiro; Nomura, Kazunori
Proceedings of International Conference on Nuclear Fuel Cycle; Sustainable Energy Beyond the Pandemic (GLOBAL 2022) (Internet), 4 Pages, 2022/07
Various radioactive wastes have been generated from Chemical Processing Facility for basic research on advanced reactor fuel reprocessing, radioactive waste disposal, and nuclear fuel cycle technology. Many types of reagents have been used for the experiments, and some troublesome materials were produced in the course of experiments. The radioactive liquid wastes were treated for stable and safe storage using decomposition, solvent extraction, precipitation, and solidification methods. In this study, current status of harmless treatment for the radioactive liquid wastes would be reported.
Sano, Yuichi; Sakamoto, Atsushi; Miyazaki, Yasunori; Watanabe, So; Morita, Keisuke; Emori, Tatsuya; Ban, Yasutoshi; Arai, Tsuyoshi*; Nakatani, Kiyoharu*; Matsuura, Haruaki*; et al.
Proceedings of International Conference on Nuclear Fuel Cycle; Sustainable Energy Beyond the Pandemic (GLOBAL 2022) (Internet), 4 Pages, 2022/07
We developed a hybrid MA(III) recovery process combining MA(III)+Ln(III) co-recovery flowsheet by solvent extraction with TBP and MA(III)/Ln(III) separation flowsheet by simulated moving bed chromatography using HONTA impregnated adsorbents with large particle size porous silica support.
Senzaki, Tatsuya; Arai, Yoichi; Yano, Kimihiko; Sato, Daisuke; Tada, Kohei; Ogi, Hiromichi*; Kawanobe, Takayuki*; Ono, Shimpei; Nakamura, Masahiro; Kitawaki, Shinichi; et al.
JAEA-Testing 2022-001, 28 Pages, 2022/05
In preparation for the decommissioning of Laboratory B of the Nuclear Fuel Cycle Engineering Laboratory, the nuclear fuel material that had been stored in the glove box for a long time was moved to the Chemical Processing Facility (CPF). This nuclear fuel material was stored with sealed by a polyvinyl chloride (PVC) bag in the storage. Since it was confirmed that the PVC bag swelled during storage, it seems that any gas was generated by radiolysis of the some components contained in the nuclear fuel material. In order to avoid breakage of the PVC bag and keep it safety for long time, we began the study on the stabilization treatment of the nuclear fuel material. First, in order to clarify the properties of nuclear fuel material, radioactivity analysis, component analysis, and thermal analysis were carried out. From the results of thermal analysis, the existence of organic matter was clarified. Then, ion exchange resin with similar thermal characteristics was selected and the thermal decomposition conditions were investigated. From the results of these analyzes and examinations, the conditions for thermal decomposition of the nuclear fuel material contained with organic matter was established. Performing a heat treatment of a small amount of nuclear fuel material in order to confirm the safety, after which the treatment amount was scaled up. It was confirmed by the weight change after the heat treatment that the nuclear fuel material contained with organic matter was completely decomposed.
Grambow, B.; Nitta, Ayako; Shibata, Atsuhiro; Koma, Yoshikazu; Utsunomiya, Satoshi*; Takami, Ryu*; Fueda, Kazuki*; Onuki, Toshihiko*; Jegou, C.*; Laffolley, H.*; et al.
Journal of Nuclear Science and Technology, 59(1), p.1 - 24, 2022/01
Times Cited Count:31 Percentile:77.63(Nuclear Science & Technology)Horiuchi, Yusuke; Watanabe, So; Sano, Yuichi; Takeuchi, Masayuki; Kida, Fukuka*; Arai, Tsuyoshi*
Journal of Radioanalytical and Nuclear Chemistry, 330(1), p.237 - 244, 2021/10
Times Cited Count:11 Percentile:75.29(Chemistry, Analytical)Applicability of tetra2-ehylhexyl diglycolamide (TEHDGA) impregnated adsorbent for minor actinide (MA) recovery from high level liquid waste (HLLW) in extraction chromatography technology was investigated through batch-wise adsorption and column separation experiments. Distribution ratio of representative fission product elements were obtained by the batch-wise experiments, and TEHDGA adsorbent was shown to be preferable to TODGA adsorbent for decontamination of several species. All Ln(III) supplied into the TEHDGA adsorbent packed column was properly eluted from the column, and the applicability of the adsorbent was successfully showed by this study.
Igarashi, Go*; Haga, Kazuko*; Yamada, Kazuo*; Aihara, Haruka; Shibata, Atsuhiro; Koma, Yoshikazu; Maruyama, Ippei*
Journal of Advanced Concrete Technology, 19(9), p.950 - 976, 2021/09
Times Cited Count:5 Percentile:25.61(Construction & Building Technology)Aihara, Haruka; Watanabe, So; Shibata, Atsuhiro; Mahardiani, L.*; Otomo, Ryoichi*; Kamiya, Yuichi*
Progress in Nuclear Energy, 139, p.103872_1 - 103872_9, 2021/09
Times Cited Count:4 Percentile:40.86(Nuclear Science & Technology)Ogi, Hiromichi*; Arai, Yoichi; Aihara, Haruka; Watanabe, So; Shibata, Atsuhiro; Nomura, Kazunori
JAEA-Technology 2021-007, 27 Pages, 2021/06
Chemical Processing Facility (CPF) of Japan Atomic Energy Agency (JAEA) has been developing the fast reactor fuel reprocessing and vitrification technology. The various kinds of radioactive liquid wastes, which were generated by those experiments and analysis, stored in the hot cells and glove boxes of CPF. The treatment of radioactive liquid wastes were started since July 2015; however, treatment of several kinds of liquid wastes are revealed to be difficult due to contain the various hazardous chemicals. Therefore, in order to establish the new technology suitable for radioactive liquid waste treatment, several collaborative research programs with several universities and national research organizations were started. The combined project lead by JAEA was named to be STRAD (Systematic Treatments of Radioactive liquid wastes for Decommissioning) project. In this project, the process flow for treatment of several actual liquid wastes were established. In this report, treated method and progress of actual liquid wastes of CPF are summarized.
Yamada, Kazuo*; Maruyama, Ippei*; Haga, Kazuko*; Igarashi, Go*; Aihara, Haruka; Tomita, Sayuri*; Kiran, R.*; Osawa, Norihisa*; Shibata, Atsuhiro; Shibuya, Kazutoshi*; et al.
Proceedings of International Waste Management Symposia 2021 (WM2021) (CD-ROM), 10 Pages, 2021/03
Nakahara, Masaumi; Sano, Yuichi; Nomura, Kazunori
Radiochimica Acta, 108(9), p.701 - 706, 2020/09
Times Cited Count:0 Percentile:0.00(Chemistry, Inorganic & Nuclear)To evaluate the corrosion behavior of a Pu evaporator made from Zr in a reprocessing plant, the influence of PuO was investigated with Pu nitrate solutions in electrochemical experiments. The maximum open circuit potential of Zr in the Pu nitrate solution was approximately 1 V in the Pu nitrate solution containing 7 mol dm
HNO
. However, there were no significant changes at high PuO
concentrations, and Zr showed high corrosion resistance under our experimental conditions.
Arai, Yoichi; Watanabe, So; Ono, Shimpei; Nomura, Kazunori; Nakamura, Fumiya*; Arai, Tsuyoshi*; Seko, Noriaki*; Hoshina, Hiroyuki*; Hagura, Naoto*; Kubota, Toshio*
Nuclear Instruments and Methods in Physics Research B, 477, p.54 - 59, 2020/08
Times Cited Count:7 Percentile:55.65(Instruments & Instrumentation)Arai, Yoichi; Watanabe, So; Ono, Shimpei; Nomura, Kazunori; Nakamura, Fumiya*; Arai, Tsuyoshi*; Seko, Noriaki*; Hoshina, Hiroyuki*; Kubota, Toshio*
QST-M-23; QST Takasaki Annual Report 2018, P. 59, 2020/03
Watanabe, So; Senzaki, Tatsuya; Shibata, Atsuhiro; Nomura, Kazunori; Takeuchi, Masayuki; Nakatani, Kiyoharu*; Matsuura, Haruaki*; Horiuchi, Yusuke*; Arai, Tsuyoshi*
Journal of Radioanalytical and Nuclear Chemistry, 322(3), p.1273 - 1277, 2019/12
Times Cited Count:6 Percentile:47.74(Chemistry, Analytical)Baron, P.*; Cornet, S. M.*; Collins, E. D.*; DeAngelis, G.*; Del Cul, G.*; Fedorov, Y.*; Glatz, J. P.*; Ignatiev, V.*; Inoue, Tadashi*; Khaperskaya, A.*; et al.
Progress in Nuclear Energy, 117, p.103091_1 - 103091_24, 2019/11
Times Cited Count:108 Percentile:94.59(Nuclear Science & Technology)The results of an international review of separation processes for spent nuclear fuel (SNF) recycling in future closed fuel cycles with the evaluation of Technology Readiness Level are reported. This study was made by the Expert Group on Fuel Recycling Chemistry (EGFRC) organised by the Nuclear Energy Agency (NEA) of the Organisation for Economic Co-operation and Development (OECD). A unique feature of this study was that processes were classified according to a hierarchy of separations aimed at different elements within spent fuel (uranium; uranium-plutonium co-recovery; minor actinides; high heat generating radionuclides) and also the Head-end processes, used to prepare the SNF for chemical separation, were included. Separation processes covered both wet (hydrometallurgical) and dry (pyro-chemical) processes.