Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 164

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

High-temperature strength of modified type 316 steel for fast reactor fuel before and after neutron irradiation

Miyazawa, Takeshi; Uwaba, Tomoyuki; Yano, Yasuhide; Tanno, Takashi; Otsuka, Satoshi; Onizawa, Takashi; Ando, Masanori; Kaito, Takeji

JAEA-Technology 2024-009, 140 Pages, 2024/10

JAEA-Technology-2024-009.pdf:8.03MB

For the purpose of enhancing the reliability of fast reactor fuel designing using modified type 316 steel, the out-of-pile and in-pile mechanical data of modified type 316 steel cladding tubes and wrapper tubes were statistically analyzed with the knowledge on material science and engineering; the high-temperature strength equations of modified type 316 steel, which can be applied to high-dose neutron irradiation environment, were derived. The out-of-pile high-temperature tensile and creep data of modified type 316 steel cladding tubes and wrapper tubes were derived up to 900$$^{circ}$$C, which is higher than the upper limit temperature of anticipated transient event of fast reactor. Using the extended database, the best-fit equation and the lower limit equation were derived for out-of-pile 0.2% proof strength, ultimate tensile strength and creep rupture strength while the best-fit equation and the upper and lower limit equations for creep strain. Furthermore, the degradation factors for tensile and creep strength, which will be produced by in-reactor environment (i.e., neutron irradiation in liquid sodium), were evaluated using the existing neutron irradiation data of modified type 316 steel, which were derived using the experimental fast reactor Joyo, the French proto-type fast reactor Phenix, the American experimental fast reactor FFTF. The derived equations were validated by the comparison with the experimental data.

Journal Articles

Evaluation of the production amount of $$^{225}$$Ac and its uncertainty through the $$^{226}$$Ra(n,2n) reaction in the experimental fast reactor Joyo

Sasaki, Yuto*; Sano, Aaru; Sasaki, Shinji; Iwamoto, Nobuyuki; Ouchi, Kazuki; Kitatsuji, Yoshihiro; Takaki, Naoyuki*; Maeda, Shigetaka

Journal of Nuclear Science and Technology, 61(4), p.509 - 520, 2024/04

 Times Cited Count:5 Percentile:78.63(Nuclear Science & Technology)

$$^{225}$$Ac is attracting attention as an alpha-emitting medical radioisotope. Since its demand is expected to increase, domestic production of $$^{225}$$Ac is required from the viewpoint of Japan's medical research and economic security. To establish the technical bases for the $$^{225}$$Ac production, JAEA has evaluated the radioactivity that can be produced in the experimental fast reactor Joyo and designed the concept that upgrades the existing facilities for transporting the irradiated target from Joyo to a neighboring PIE facility rapidly. Efficient $$^{225}$$Ac Separation from $$^{226}$$Ra irradiated in a fast reactor was studied. Ba and La were used as alternatives to Ra and Ac, respectively. By using DGA resin as an adsorbent, it can be expected that Ra and impurities generated by irradiation will be removed and Ac will be isolated. This study has revealed that Joyo can sufficiently produce $$^{225}$$Ac as a raw material for pharmaceuticals.

JAEA Reports

Analysis of deposits inside the reactor at Fukushima Daiichi Nuclear Power Station in JFY2021; The Subsidy program of "Project of Decommissioning and Contaminated Water Management (Development of Analysis and Estimation Technology for Characterization of Fuel Debris)" starting FY2021

Ikeuchi, Hirotomo; Sasaki, Shinji; Onishi, Takashi; Nakayoshi, Akira; Arai, Yoichi; Sato, Takumi; Ohgi, Hiroshi; Sekio, Yoshihiro; Yamaguchi, Yukako; Morishita, Kazuki; et al.

JAEA-Data/Code 2023-005, 418 Pages, 2023/12

JAEA-Data-Code-2023-005-01.pdf:24.59MB
JAEA-Data-Code-2023-005-02.pdf:32.18MB

For safe and steady decommissioning of Tokyo Electric Power Company Holdings' Fukushima Daiichi Nuclear Power Station (1F), information concerning composition and physical/chemical properties of fuel debris generated in the reactors should be estimated and provided to other projects conducting the decommissioning work including the retrieval of fuel debris and the subsequent storage. For this purpose, in FY2021, samples of contaminants (the wiped smear samples and the deposits) obtained through the internal investigation of the 1F Unit 2 were analyzed to clarify the components and to characterize the micro-particles containing uranium originated from fuel (U-bearing particles) in detail. This report summarized the results of analyses performed in FY2021, including the microscopic analysis by SEM and TEM, radiation analysis, and elemental analysis by ICP-MS, as a database for evaluating the main features of each sample and the probable formation mechanism of the U-bearing particles.

Journal Articles

Data processing and visualization of X-ray computed tomography images of a JOYO MK-III fuel assembly

Tsai, T.-H.; Sasaki, Shinji; Maeda, Koji

Journal of Nuclear Science and Technology, 60(6), p.715 - 723, 2023/06

 Times Cited Count:1 Percentile:14.04(Nuclear Science & Technology)

Journal Articles

Development and issues of fast reactor core materials

Kaito, Takeji; Otsuka, Satoshi; Yano, Yasuhide; Tanno, Takashi

Nuclear Materials Letters (Internet), p.29 - 43, 2022/12

no abstracts in English

JAEA Reports

Development of technologies for enhanced analysis accuracy of fuel debris; Summary results of the 2020 fiscal year (Subsidy program for the project of decommissioning and contaminated water management)

Ikeuchi, Hirotomo; Koyama, Shinichi; Osaka, Masahiko; Takano, Masahide; Nakamura, Satoshi; Onozawa, Atsushi; Sasaki, Shinji; Onishi, Takashi; Maeda, Koji; Kirishima, Akira*; et al.

JAEA-Technology 2022-021, 224 Pages, 2022/10

JAEA-Technology-2022-021.pdf:12.32MB

A set of technology, including acid dissolving, has to be established for the analysis of content of elements/nuclides in the fuel debris samples. In this project, a blind test was performed for the purpose of clarifying the current level of analytical accuracy and establishing the alternative methods in case that the insoluble residue remains. Overall composition of the simulated fuel debris (homogenized powder having a specific composition) were quantitatively determined in the four analytical institutions in Japan by using their own dissolving and analytical techniques. The merit and drawback for each technique were then evaluated, based on which a tentative flow of the analyses of fuel debris was constructed.

Journal Articles

Materials science and fuel technologies of uranium and plutonium mixed oxide

Kato, Masato; Machida, Masahiko; Hirooka, Shun; Nakamichi, Shinya; Ikusawa, Yoshihisa; Nakamura, Hiroki; Kobayashi, Keita; Ozawa, Takayuki; Maeda, Koji; Sasaki, Shinji; et al.

Materials Science and Fuel Technologies of Uranium and Plutonium mixed Oxide, 171 Pages, 2022/10

Innovative and advanced nuclear reactors using plutonium fuel has been developed in each country. In order to develop a new nuclear fuel, irradiation tests are indispensable, and it is necessary to demonstrate the performance and safety of nuclear fuels. If we can develop a technology that accurately simulates irradiation behavior as a technology that complements the irradiation test, the cost, time, and labor involved in nuclear fuel research and development will be greatly reduced. And safety and reliability can be significantly improved through simulation of nuclear fuel irradiation behavior. In order to evaluate the performance of nuclear fuel, it is necessary to know the physical and chemical properties of the fuel at high temperatures. And it is indispensable to develop a behavior model that describes various phenomena that occur during irradiation. In previous research and development, empirical methods with fitting parameters have been used in many parts of model development. However, empirical techniques can give very different results in areas where there is no data. Therefore, the purpose of this study is to construct a scientific descriptive model that can extrapolate the basic characteristics of fuel to the composition and temperature, and to develop an irradiation behavior analysis code to which the model is applied.

JAEA Reports

Analysis of deposits inside the reactor at Fukushima Daiichi Nuclear Power Station in JFY 2017-2018; The Subsidy programs "Project of Decommissioning and Contaminated Water Management in the FY2016 Supplementary Budget, (Development of Technologies for Grasping and Analyzing Properties of Fuel Debris)

Nakayoshi, Akira; Mitsugi, Takeshi; Sasaki, Shinji; Maeda, Koji

JAEA-Data/Code 2021-011, 279 Pages, 2022/03

JAEA-Data-Code-2021-011.pdf:37.76MB

At the TEPCO's Fukushima Daiichi Nuclear Power Station (1F), an investigation inside the reactors has been carried out, and R&D has been made on methods of fuel debris retrieval and storage after retrieval. In order to carry out the decommissioning work safely and steadily, understanding characteristics of fuel debris in the reactors is required. Therefore, in the development of technologies for grasping and analyzing properties of fuel debris project, the characteristics of simulated fuel debris, such as hardness, drying behavior, etc., of fuel debris for design of removal and storage, have been investigated and estimated, and provided to other projects conducting the decommissioning work. As part of this project, U-containing particles in samples (e.g., deposit on the investigation equipment, sediment in the reactors, etc.) obtained during the internal investigation of the reactors of 1F units 1 to 3 were analyzed. This report summarized the results of FE-SEM/WDX, FE-SEM/EDS, STEM/EDS, and TEM analysis, which were extracted from all analysis results obtained, as a database for the evaluation of the generation mechanism of U-containing particles. The analyses were performed at the JAEA Oarai Research and Development Institute and Nippon Nuclear Fuel Development Co., LTD.

Journal Articles

Concerning aging of nuclear fuel material use facilities Examination of measures to improve safety assessment methods

Sakamoto, Naoki; Fujishima, Tadatsune; Mizukoshi, Yasutaka

Hozengaku, 19(2), p.125 - 126, 2020/07

The five post-irradiation examination facilities in JAEA's Oarai research and development institute have been operated for over 40 years in order to investigate the irradiation performance of fast reactor fuel materials. The equipment associated with these facilities has been managed to maintain secure from the problems occurred in the process of aging. Therefore, we established a safety assessment method for aging facilities in 2002, and we have been conducting maintenance management of facilities since then. In this study, improvement plans of the safety assessment method are considered in order to solve the issues detected as a result of analysis of past maintenance information.

Journal Articles

Development of experimental technology for simulated fuel-assembly heating to address core-material-relocation behavior during severe accident

Abe, Yuta; Yamashita, Takuya; Sato, Ikken; Nakagiri, Toshio; Ishimi, Akihiro

Journal of Nuclear Engineering and Radiation Science, 6(2), p.021113_1 - 021113_9, 2020/04

Journal Articles

Restructure behavior analysis in fast breeder reactor MOX fuel by X-ray CT

Ishimi, Akihiro; Katsuyama, Kozo; Furuya, Hirotaka*

Journal of Nuclear Science and Technology, 56(11), p.981 - 987, 2019/07

 Times Cited Count:3 Percentile:25.69(Nuclear Science & Technology)

Both high and low density MOX fuel pellets of uranium and plutonium oxides were irradiated in the experimental fast reactor JOYO. After irradiation, these fuel pellets were examined by X-ray CT and their irradiation behavior was evaluated for formation of the central void. In particular, the central void size and temperature of fuel pellets at the beginning and end of irradiation were analyzed. The central voids in the low density fuel pellets were bigger than those of the high density fuel pellets at the same linear heating rate (LHR), and the threshold LHR and temperature at which the central voids were formed were lower than those of the high density fuel pellets. It was understood from these results that the irradiation behaviors of high and low density fuel pellets were different.

Journal Articles

Challenge next-generation nuclear system; Development of oxide dispersion strengthened ferritic steel

Otsuka, Satoshi; Kaito, Takeji

Enerugi Rebyu, 39(1), p.44 - 46, 2019/01

For performance improvement of next-generation nuclear system such as fast reactor, it has been expected to develop advanced material resistant to severe in-reactor environment (i.e. high-dose neutron irradiation at high-temperature). Japan Atomic Energy Agency (JAEA) has been developing Oxide Dispersion Strengthened (ODS) ferritic steel for long life fuel cladding tube of fast reactor. Application of ODS ferritic steel to fast reactor fuel can extend the fuel life time twice or more as long as the fuel with conventional cladding tube (i.e. modified SUS316), thus reducing fuel exchange frequency and fuel cost. It can be adaptable to high-temperature plant operation, which is favorable for improvement of power generation efficiency. This paper interprets the development of ODS ferritic steel cladding tube for sodium-cooled fast reactor, which has been led by JAEA for dozens of years.

Journal Articles

Development of experimental technology for simulated fuel-assembly heating to address core-material-relocation behavior during severe accident

Abe, Yuta; Yamashita, Takuya; Sato, Ikken; Nakagiri, Toshio; Ishimi, Akihiro; Nagae, Yuji

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 9 Pages, 2018/07

Journal Articles

Application of nontransfer type plasma heating technology for core-material-relocation tests in boiling water reactor severe accident conditions

Abe, Yuta; Sato, Ikken; Nakagiri, Toshio; Ishimi, Akihiro; Nagae, Yuji

Journal of Nuclear Engineering and Radiation Science, 4(2), p.020901_1 - 020901_8, 2018/04

A new experimental program using non-transfer type plasma heating is under consideration in JAEA to clarify the uncertainty on core-material relocation (CMR) behavior of BWR. In order to confirm the applicability of this new technology, authors performed preparatory plasma heating tests using small-scale test pieces (107 mm $$times$$ 107 mm $$times$$ 222 mm (height)). An excellent perspective in terms of applicability of the non-transfer plasma heating to melting high melting-temperature materials such as ZrO$$_{2}$$ has been obtained. In addition, molten pool was formed at the middle height of the test piece indicating its capability to simulate the initial phase of core degradation behavior consistent with the real UO$$_{2}$$ fuel Phebus-FPT tests. Furthermore, application of EPMA, SEM/EDX and X-ray CT led to a conclusion that the pool formed consisted mainly of Zr with some concentration of oxygen which tended to be enhanced at the upper surface region of the pool. Based on these results, an excellent perspective in terms of applicability of the non-transfer plasma heating technology to the Severe Accident (SA) experimental study was obtained.

Journal Articles

Irradiation performance of sodium-bonded control rod for the fast breeder reactor

Sasaki, Shinji; Maeda, Koji; Furuya, Hirotaka*

Journal of Nuclear Science and Technology, 55(3), p.276 - 282, 2018/03

 Times Cited Count:4 Percentile:32.93(Nuclear Science & Technology)

Journal Articles

Distributions of density and fission products in the reaction product between irradiated MOX fuel and molten zircaloy-2

Ishimi, Akihiro; Katsuyama, Kozo; Maeda, Koji; Furuya, Hirotaka*

Journal of Nuclear Science and Technology, 54(11), p.1274 - 1276, 2017/11

 Times Cited Count:1 Percentile:9.23(Nuclear Science & Technology)

Two- and three-dimensional images were obtained in the reaction product between zircaloy and MOX fuel by X-ray CT. In addition, the $$gamma$$-ray intensity distributions of two fission products (Cs-137 and Eu-154) and one neutron-activated nuclide (Co-60) were obtained in this specimen by $$gamma$$-ray measurements. The average values of the fuel density (about 10.5 g/cm$$^{3}$$) and the cladding density (about 6.55 g/cm$$^{3}$$) were obtained in the metallic phase region by evaluation of the density distributions on two-dimensional X-ray CT images. In addition, the distributions of the roughly crushed fuel pellet and the pores in the specimen could be clearly observed on the three-dimensional X-ray CT images. From the $$gamma$$-ray measurement, Cs-137 was observed on the unreacted fuel region and the region where pores exist in the metallic phase, and Eu-154 was widely distributed to all regions. On the other hand, Co-60 was confirmed only in the metallic phase region.

Journal Articles

Defect chemistry and basic properties of non-stoichiometric PuO$$_{2}$$

Kato, Masato; Nakamura, Hiroki; Watanabe, Masashi; Matsumoto, Taku; Machida, Masahiko

Defect and Diffusion Forum, 375, p.57 - 70, 2017/05

The basic properties of PuO$$_{2-x}$$ were reviewed, and the equilibrium defects in PuO$$_{2-x}$$ were evaluated from the experimental data of the oxygen potential and electrical conductivity as well as the Ab-initio calculation results. Consistency among various properties was confirmed, and the mechanistic models for thermal property representations were derived.

Journal Articles

Oxygen potentials, oxygen diffusion coefficients and defect equilibria of nonstoichiometric (U,Pu)O$$_{2pm x}$$

Kato, Masato; Watanabe, Masashi; Matsumoto, Taku; Hirooka, Shun; Akashi, Masatoshi

Journal of Nuclear Materials, 487, p.424 - 432, 2017/04

 Times Cited Count:20 Percentile:85.34(Materials Science, Multidisciplinary)

Oxygen potential of (U,Pu)O$$_{2pm x}$$ was evaluated based on defect chemistry using an updated experimental data set. The relationship between oxygen partial pressure and deviation $$x$$ in (U,Pu)O$$_{2pm x}$$ was analyzed, and equilibrium constants of defect formation were determined as functions of Pu content and temperature. Brouwer's diagrams were constructed using the determined equilibrium constants, and a relational equation to determine O/M ratio was derived as functions of O/M ratio, Pu content and temperature. In addition, relationship between oxygen potential and oxygen diffusion coefficients were described.

Journal Articles

Development of non-transfer type plasma heating technology to address CMR behavior during severe accident with BWR design conditions

Abe, Yuta; Sato, Ikken; Nakagiri, Toshio; Ishimi, Akihiro; Nagae, Yuji

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 7 Pages, 2017/04

Journal Articles

Application of FE-SEM to the measurement of U, Pu, Am in the irradiated MA-MOX fuel

Sasaki, Shinji; Tanno, Takashi; Maeda, Koji

Proceedings of 54th Annual Meeting of Hot Laboratories and Remote Handling (HOTLAB 2017) (Internet), 6 Pages, 2017/00

During irradiation in a fast reactor, the microstructure change of the mixed oxide fuels and the changes of element distributions occur because of a radial temperature gradient. Therefore, it is important to study the irradiation behavior of MA-MOX for advancement of fast reactor fuels. In order to make detailed observations of microstructure and elemental analyses of MA-MOX, irradiated MA-MOX specimens were carried out PIE by using a FE-SEM equipped with WDX. Because fuel samples have high radio activities and emit alpha-particles, the instrument was modified. the instrument was installed in a lead shield box and the control unit was separately located outside the box. The microstructure changes were observed in irradiated MA-MOX specimen. The characteristic X-rays peaks were detected successfully. By measuring the intensities of characteristic X-rays, it was tried quantitative analysis of U, Pu, Am along radial direction of irradiated specimen.

164 (Records 1-20 displayed on this page)