頭部モデルファントムの製作及びその脳表面熱中性子束分布測定(協力研究)
Production of a faithful realistic phantom to human head and thermal neutron flux measurement on the brain surface (Cooperative research)
山本 和喜 ; 熊田 博明; 岸 敏明 ; 鳥居 義也 ; 遠藤 聖*; 山本 哲哉*; 松村 明*; 内山 順三; 能勢 忠男*
Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Torii, Yoshiya; Endo, Kiyoshi*; Yamamoto, Tetsuya*; Matsumura, Akira*; Uchiyama, Junzo; Nose, Tadao*
現在の医療照射では金線によって熱中性子束を測定し線量を決定しているため、測定ポイントに限りがあり、照射後に任意の場所の線量評価を行うことができない。これらを補うために線量評価システム等による計算シミュレーションによって線量評価が行われている。本研究では実験による線量評価方法として、人の頭部に忠実な実体ファントムの製作、及び、実際の医療照射時のデータに基づいた照射実験を実施した。実験による線量評価手法の確立には人の頭部に忠実な実体ファントムの製作が重要であり、その製作には光造形技術(Rapid Prototyping Technique)を用いた。さらに、医療照射時の照射条件を模擬して、評価上重要である脳表面の熱中性子束分布を実体ファントムを用いて詳細に測定を行った。この実体ファントムによる実験的詳細評価手法は臨床照射条件にかなり近くすることができ、内部線量の直接測定はもちろんのこと、ファントムに細胞を入れることにより生物学的効果の測定にも利用できる。
Thermal neutron flux is determined using the gold wires in current BNCT irradiation, so evaluation of arbitrary points after the irradiation is limited in the quantity of these detectors. In order to make up for the weakness, dose estimation of a patient is simulated by a computational dose calculation supporting system. In another way without computer simulation, a medical irradiation condition can be replicate experimentally using of realistic phantom which was produced from CT images by rapid prototyping technique. This phantom was irradiated at a same JRR-4 neutron beam as clinical irradiation condition of the patient and the thermal neutron distribution on the brain surface was measured in detail. This experimental evaluation technique using a realistic phantom is applicable to in vitro cell irradiation experiments for radiation biological effects as well as in-phantom experiments for dosimetry under the nearly medical irradiation condition of patient.