The Effect of the electron temperature and current density profiles on the plasma current decay in JT-60U disruptions
JT-60Uディスラプションにおける電子温度,電流密度分布がプラズマ電流減衰に与える影響
柴田 欣秀; 諫山 明彦; 宮本 斉児*; 河上 翔*; 渡邊 清政*; 松永 剛; 河野 康則; Lukash, V.*; Khayrutdinov, R.*; JT-60チーム
Shibata, Yoshihide; Isayama, Akihiko; Miyamoto, Seiji*; Kawakami, Sho*; Watanabe, Kiyomasa*; Matsunaga, Go; Kawano, Yasunori; Lukash, V.*; Khayrutdinov, R.*; JT-60 Team
JT-60Uのディスラプションにおいて、電流クエンチ初期のプラズマ電流の減衰をディスラプションシミュレーションコード(DINA)と計測された電子温度分布を用いて計算した。電流減衰時間が短い放電では、熱クエンチ直後の電子温度分布は既にピークしており、電流クエンチ中にあまり変化しなかった。一方、電流減衰時間が長い放電では、熱クエンチ直後の電子温度分布は電流減衰時間が短い放電に比べて広がりを持っており、電流クエンチ中に電子温度分布の収縮が観測された。そのような放電では、プラズマ外部インダクタンスはほとんど変化しないが、プラズマ内部インダクタンスの増加がDINAコードの計算でも観測された。一連の計算により、プラズマ内部インダクタンスの増加は、周辺領域の電子温度が減少し、プラズマ中心に電流が拡散することにより発生していることが分かった。また、本研究ではDINAコードを用いることにより、プラズマ周辺部の電子温度の加熱を用いることによりプラズマ電流の減衰時間を長くする方法を提案した。
In JT-60U disruption, the plasma current decay during the initial phase of current quench has been calculated by a disruption simulation code (DINA) using the measured electron temperature profile. In the case of fast plasma current decay, has a peaked profile just after thermal quench and the profile doesn't change significantly during the initial phase of current quench. On the other hand, in the case of the slow plasma current decay, the profile is border just after the thermal quench, and the profile shrinks. The results of DINA simulation show that plasma internal inductance increases during the initial phase of current quench, while plasma external inductance does not change in time. The increase of is caused by current diffusion toward the core plasma due to the decrease of in intermediate and edge regions. It is suggested that an additional heating in the plasma periphery region has the effect of slowing down plasma current decay.