Refine your search�ソスF     
Report No.
 - 

Graft-type polymer electrolyte membranes for fuel cells prepared through radiation-induced graft polymerization into alicyclic polybenzimidazoles

Park, J.*; Takayama, Toshio*; Asano, Masaharu; Maekawa, Yasunari; Kudo, Kazuaki*; Takayama, Toshio*

Graft-type sulfonated polybenzimidazole was prepared through radiation-induced graft polymerization of styrenes into an alicyclic polybenzimidazole film and subsequent sulfonation. The alicyclic polybenzimidazole, ChPBI, was prepared from $$trans$$-1,4-cyclohexanedicarboxylic acid and 3,3'-diaminobenzidine using typical polycondensation. Anisotropic domains with a size of several tens of micrometers were found in the ChPBI films casted from LiCl-containing $$N$$,$$N$$-dimethylacetamide. Irradiation of the ChPBI membranes with a 220 kGy dose of $$gamma$$-rays created radical species with mean lifetimes of two days. The treatment of this membrane with a 50/50 (v/v) mixture of 1-propanol and styrene produced polystyrene graft chains. Sulfonation of the resulting grafted membrane with ClSOH$$_{3}$$OH occurred selectively on the polystyrene grafts. The sulfonated films showed proton conductivity on the order of 10$$^{-3}$$ to 10$$^{-2}$$ S/cm with an ion exchange capacity between 2.1 and 2.9 mmol/g. SEM-EDX analysis of the membrane indicated the presence of macrophase separated domains up to 1 $$mu$$m in diameter. The proton conductivity of the membrane did not decrease for 600 h at 120$$^{circ}$$C in liquid water.

Accesses

:

- Accesses

InCites™

:

Percentile:19.45

Category:Polymer Science

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.