検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Estimation of planes of a rock mass in a gallery wall from point cloud data based on MD PSO

多次元粒子群最適化に基づく坑道壁面岩盤の点群データからの平面の推定

松浦 勇斗*; 早野 明; 板倉 賢一*; 鈴木 幸司*

Matsuura, Yuto*; Hayano, Akira; Itakura, Kenichi*; Suzuki, Yukinori*

三次元レーザスキャナの計測では、計測対象物表面に対して高解像度の距離計測が行われ、その計測結果として、計測対象物表面の三次元形状を表す点群データが取得される。取得される点群データは、トンネル壁面の岩盤に分布する割れ目といった不連続面の抽出に活用することができ、その際、点群データから小平面を推定する必要がある。本研究では、点群データから小平面を推定するアルゴリズムとして多次元粒子群最適化(MD PSO)に基づく手法を開発した。MD PSOでは、点群データをバウンディングボックスにより区分し、それぞれの点の法線ベクトルを求め、それに基づき点群データを複数のクラスターに分類する。そして、それぞれのクラスターの点群データに対する最小二乗法により面が推定される。新しく開発されたMD PSOに基づくアルゴリズムを実際の坑道壁面の点群データを用いて適用性を評価した。MD PSOアルゴリズムを適用した場合、従来手法の可変格子分割法(VBS)に基づくアルゴリズムと比較して、7%高い正確性を示した。

LiDAR (laser imaging detection and ranging) has been developed to obtain a high-resolution point cloud data indicating the detailed 3D shapes of an object. To identify discontinuities in a rock mass of a tunnel gallery wall, it is necessary to approximate the rock mass surface with small planes. Normal vectors of the planes are important to identify discontinuities. We developed an algorithm for estimation of planes based on multi-dimensional particle swarm optimization (MD PSO) from point cloud data. Point cloud data were segmented into bounding boxes and grouped into clusters by MD PSO. Planes were estimated using the least squares method for point cloud data in the respective clusters. The newly developed MD PSO algorithm was evaluated using point cloud data obtained from a gallery wall. Evaluation was carried out in comparison with the previous developed variable-box segmentation (VBS) algorithm. The MD PSO-based algorithm showed a 7% higher accuracy than that of the VBS algorithm.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.