検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Computational fluid dynamics analysis for hydrogen deflagration tests at ENACCEF2 facility

Trianti, N.; 佐藤 允俊*; 杉山 智之; 丸山 結

Trianti, N.; Sato, Masatoshi*; Sugiyama, Tomoyuki; Maruyama, Yu

Simulation techniques have been developed to analyze the deflagration behavior of hydrogen generated during a hypothetical severe accident in nuclear power plants. The CFD analysis was carried out on the hydrogen deflagration experiment performed at the ENACCEF2 facility composed mainly of a vertical cylindrical tube filled with hydrogen-air mixture and nine annular obstacles were placed in the lower part of the tube. The simulation was carried out by the reactingFoam solver of OpenFOAM 3.0, an open source software for the CFD analysis. The RNG (Renormalization group) k-$$varepsilon$$ model was applied for turbulent flow. The interaction of the chemical reaction with the turbulent flow was considered using PaSR (Partial Stirred Reactor) model with 19 elementary reactions for the hydrogen combustion. The analysis result showed the characteristic of flame acceleration by the obstacle region was qualitatively reproduced even though has discrepancy with the experiment.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.