検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Estimation of the core degradation and relocation at the Fukushima Daiichi Nuclear Power Station Unit 2 based on RELAP/SCDAPSIM analysis

RELAP/SCDAPSIMコードを用いた福島第一原子力発電所2号機における炉心溶融移行挙動の推定

間所 寛 ; 佐藤 一憲

Madokoro, Hiroshi; Sato, Ikken

Estimation of the final debris distribution at the Fukushima Daiichi Nuclear Power Plant (1F) is inevitable for a safe and effective decommissioning. It is necessary to clarify possible failure modes of the reactor pressure vessel (RPV), which is influenced by the thermal status of slumped debris that highly depends on the in-vessel accident progression. The accident analysis of 1F Unit 2 (1F2) was conducted using the RELAP/SCDAPSIM code. One of the unsolved issues of 1F2 is the mechanism of three pressure peaks measured through late Mar. 14 to early March 15, 2011. Comparing the results of previous boiling water reactor (BWR) core degradation experiments and that of 1F2 numerical analysis, it can be estimated that most relocated metallic materials had solidified at the core bottom at the onset of first pressure peak. It is likely that the pressure increase occurred due to the evaporation of injected water reaching the heated core plate structures. Between the first and second pressure peaks, the water is assumed to have been injected continuously and the water level was likely to have recovered to BAF at the initiation of the second pressure peak. Probable slumping of a certain amount of molten materials initiated the second pressure peak and the subsequent gradual pressure increase continued possibly due to massive reaction between coolant and remaining Zircaloy in the core. Assuming the closure of the safety relief valve (SRV) at 0:00 on Mar. 15, the third pressure peak was well reproduced in the analysis.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.