検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Evidence for magnon-phonon coupling in the topological magnet Cu$$_{3}$$TeO$$_{6}$$

トポロジカル磁性体Cu$$_{3}$$TeO$$_{6}$$におけるマグノン-フォノン結合

Bao, S.*; Cai, Z.*; Si, W.*; Wang, W.*; Wang, X.*; Shangguan, Y.*; Ma, Z.*; Dong, Z.-Y.*; 梶本 亮一  ; 池内 和彦*; Yu, S.-L.*; Sun, J.*; Li, J.-X.*; Wen, J.*

Bao, S.*; Cai, Z.*; Si, W.*; Wang, W.*; Wang, X.*; Shangguan, Y.*; Ma, Z.*; Dong, Z.-Y.*; Kajimoto, Ryoichi; Ikeuchi, Kazuhiko*; Yu, S.-L.*; Sun, J.*; Li, J.-X.*; Wen, J.*

We perform thermodynamic and inelastic neutron scattering (INS) measurements to study the lattice dynamics (phonons) of a cubic collinear antiferromagnet Cu$$_{3}$$TeO$$_{6}$$ which hosts topological spin excitations (magnons). While the specific heat and thermal conductivity results show that the thermal transport is dominated by phonons, the deviation of the thermal conductivity from a pure phononic model indicates that there is a strong coupling between magnons and phonons. In the INS measurements, we find a mode in the excitation spectra at 4.5 K, which exhibits a slight downward dispersion around the Brillouin zone center. This mode disappears above the N$'{e}$el temperature and thus cannot be a phonon. Furthermore, the dispersion is distinct from that of a magnon. Instead, it can be explained by the magnon-polaron mode, collective excitations resulting from the hybridization between magnons and phonons. We consider the suppression of the thermal conductivity and emergence of the magnon-polaron mode to be evidence for magnon-phonon coupling in Cu$$_{3}$$TeO$$_{6}$$.

Access

:

- Accesses

InCites™

:

パーセンタイル:100

分野:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.