検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Meteorological aspects of gamma-ray glows in winter thunderstorms

冬のガンマ線光の気象学的側面

和田 有希*; 榎戸 輝揚*; 久保 守*; 中澤 知洋*; 篠田 太郎*; 米徳 大輔*; 澤野 達哉*; 湯浅 孝行*; 牛尾 知雄*; 佐藤 陽祐*; Diniz, G. S.*; 土屋 晴文 

Wada, Yuki*; Enoto, Teruaki*; Kubo, Mamoru*; Nakazawa, Kazuhiro*; Shinoda, Taro*; Yonetoku, Daisuke*; Sawano, Tatsuya*; Yuasa, Takayuki*; Ushio, Tomoo*; Sato, Yosuke*; Diniz, G. S.*; Tsuchiya, Harufumi

graupels

During three winter seasons from November 2016 to March 2019, 11 gamma-ray glows were detected at a single observation site of our ground-based gamma-ray monitoring network in Kanazawa, Japan. These events are analyzed with observations of an X-band radar network, a ceilometer, a disdrometer, and a weather monitor. All the detected glows were connected to convective high-reflectivity regions of more than 35 dBZ, developed up to an altitude of $$>$$2 km. They were also accompanied by heavy precipitation of graupels. Therefore, graupels in the lower layer of thunderclouds that correspond to high-reflectivity regions can form strong electric fields producing gamma-ray glows. Also, these events are compared with a limited sample of nondetection cases, but no significant differences in meteorological conditions were found between detection and nondetection cases in the present study.

Access

:

- Accesses

InCites™

:

パーセンタイル:90.11

分野:Geosciences, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.