検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

機械学習による細分化格子に基づく二次元定常流予測

Multi-resolution steady flow prediction with convolutional neural networks

朝比 祐一  ; 畑山 そら*; 下川辺 隆史*; 小野寺 直幸  ; 長谷川 雄太  ; 井戸村 泰宏  

Asahi, Yuichi; Hatayama, Sora*; Shimokawabe, Takashi*; Onodera, Naoyuki; Hasegawa, Yuta; Idomura, Yasuhiro

多重解像度の定常流流れ場を符合付き距離関数から予測するConvolutional Neural networkモデルを開発した。高解像度の画像生成を可能とするネットワークPix2PixHDをパッチ化された高解像度データに適用することで、通常のPix2PixHDよりメモリ使用量を削減しつつ、高解像度流れ場の予測が可能であることを示した。

We develop a convolutional neural network model to predict the multi-resolution steady flow. Based on the state-of-the-art image-to-image translation model Pix2PixHD, our model can predict the high resolution flow field from the signed distance function. By patching the high resolution data, the memory requirements in our model is suppressed compared to Pix2PixHD.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.