検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Machine-learning guided discovery of a new thermoelectric material

機械学習にガイドされた新規熱電材料の発見

岩崎 悠真*; 竹内 一郎*; Stanev, V.*; Gilad Kusne, A.*; 石田 真彦*; 桐原 明宏*; 井原 和紀*; 澤田 亮人*; 寺島 浩一*; 染谷 浩子*; 内田 健一*; 齊藤 英治; 萬 伸一*

Iwasaki, Yuma*; Takeuchi, Ichiro*; Stanev, V.*; Gilad Kusne, A.*; Ishida, Masahiko*; Kirihara, Akihiro*; Ihara, Kazuki*; Sawada, Ryoto*; Terashima, Koichi*; Someya, Hiroko*; Uchida, Kenichi*; Saito, Eiji; Yorozu, Shinichi*

Thermoelectric technologies are becoming indispensable in the quest for a sustainable future. Recently, an emerging phenomenon, the spin-driven thermoelectric effect (STE), has garnered much attention as a promising path towards low cost and versatile thermoelectric technology with easily scalable manufacturing. However, progress in development of STE devices is hindered by the lack of understanding of the fundamental physics and materials properties responsible for the effect. In such nascent scientific field, data-driven approaches relying on statistics and machine learning, instead of more traditional modeling methods, can exhibit their full potential. Here, we use machine learning modeling to establish the key physical parameters controlling STE. Guided by the models, we have carried out actual material synthesis which led to the identification of a novel STE material with a thermopower an order of magnitude larger than that of the current generation of STE devices.

Access

:

- Accesses

InCites™

:

パーセンタイル:92.99

分野:Multidisciplinary Sciences

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.