検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Development of probabilistic risk assessment methodology against strong wind for sodium-cooled fast reactors

高速炉の強風に対する確率論的リスク評価手法の開発

西野 裕之  ; 山野 秀将   ; 栗坂 健一 

Nishino, Hiroyuki; Yamano, Hidemasa; Kurisaka, Kenichi

確率論的リスク評価(PRA)は地震と津波だけでなく強風などその他の外部ハザードについても実施されるべきである。本研究では強風に対するPRA手法の開発を実施する。この研究では高速炉を対象とし、事故時には大気が最終除熱源であることに着目して手法開発を実施する。最初に本研究では日本の気象データを基にグンベル分布を使って強風のハザード曲線を評価した。次に、崩壊熱除去のために必要となる重要機器や構築物(SSCs)を同定し、炉心損傷に至るまでのイベントツリーを構築した。このイベントツリーでは強風によって生じる飛来物等を考慮した。高所に配置しているSSCsにも影響する飛来物を同定し、衝突確率と衝突時の破損確率の積でSSCsのフラジリティを計算した。最後に、イベントツリーを定量化し、炉心損傷頻度を計算した。その発生頻度は5E-10/yになった。支配的なシーケンスは、外部電源喪失が発生した後、飛来物の衝突でタンク火災が発生し、強制循環のための電源供給が喪失及び崩壊熱除去の空気取入口の気温上昇による崩壊熱除去の失敗であった。このような計算を通じて、本研究では強風に対するPRAの手法開発を実施した。

For nuclear power plants, probabilistic risk assessment (PRA) should be performed not only against earthquake and tsunami, which are critical events especially in Japan, but also other external hazards such as strong wind. The aim of the present study is to develop a practical PRA methodology for sodium-cooled fast reactors (SFRs) against strong wind, paying attention to the final heat sink, ambient air, that removes decay heat under accident conditions. First, this study used Gumbel distributions to estimate hazard curves of the strong wind based on weather data recorded in Japan. Second, it identified important structures, systems and components (SSCs) for decay heat removal, and developed an event tree that results in core damage, focusing on the impacts of missiles (e.g., steel pipes) caused by strong wind. It also identified missiles that can reach SSCs at elevated places, and calculated the fragility of the SSCs against the missiles as a product of two probabilities. One is a probability of the missiles that would enter an inlet or outlet of the decay heat removal system, and another is a probability of failure caused by missile impacts. Finally, it quantified conditional decay heat removal failure probabilities by introducing the fragilities into the event tree. The core damage frequency (CDF) was estimated at about 5x10-10/y. The dominant sequence is that strong wind causes offsite power loss and missiles, the missiles penetrate the diesel fuel tank, cause a fire, and the fire increases air temperature around the reactor building where air cooler inlets of decay heat removal systems are installed, leads to loss of power for the diesel generator for forced circulation cooling, resulting in loss of decay heat removal. Through the above, this study has developed the practical PRA methodology for SFRs against strong wind.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.