Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamamoto, Katsuhiro*; Imai, Tatsuya*; Kawai, Atsuki*; Ito, Eri*; Miyazaki, Tsukasa*; Miyata, Noboru*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki
ACS Applied Materials & Interfaces, 16(48), p.66782 - 66791, 2024/11
Times Cited Count:0 Percentile:0.00(Nanoscience & Nanotechnology)Hou, L.*; Toda, Kanako*; Mei, H.; Aoyagi, Noboru; Saito, Takumi*
Journal of Nuclear Science and Technology, 61(11), p.1488 - 1498, 2024/11
Times Cited Count:2 Percentile:62.55(Nuclear Science & Technology)Sugiura, Yuki; Ishidera, Takamitsu; Aoyagi, Noboru; Mei, H.; Saito, Takumi*; Tachi, Yukio
Applied Clay Science, 258, p.107476_1 - 107476_10, 2024/09
Times Cited Count:1 Percentile:56.88(Chemistry, Physical)Aoyagi, Noboru; Motokawa, Ryuhei; Okumura, Masahiko; Ueda, Yuki; Saito, Takumi*; Nishitsuji, Shotaro*; Taguchi, Tomitsugu*; Yomogida, Takumi; Sazaki, Gen*; Ikeda, Atsushi
Communications Chemistry (Internet), 7, p.128_1 - 128_13, 2024/06
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Mei, H.; Aoyagi, Noboru; Saito, Takumi*; Tanaka, Kazuya; Sugiura, Yuki; Tachi, Yukio
Applied Geochemistry, 162, p.105926_1 - 105926_8, 2024/02
Times Cited Count:2 Percentile:73.64(Geochemistry & Geophysics)Nagai, Yuya; Shuji, Yoshiyuki; Kawasaki, Takeshi; Aita, Takahiro; Kimura, Yasuhisa; Nemoto, Yasunori*; Onuma, Takeshi*; Tomiyama, Noboru*; Hirano, Koji*; Usui, Yasuhiro*; et al.
JAEA-Technology 2022-039, 117 Pages, 2023/06
Japan Atomic Energy Agency (JAEA) manages wide range of nuclear facilities. Many of these facilities are required to be performed adjustment with the aging and complement with the new regulatory standards and the earthquake resistant, since the Great East Japan Earthquake and the Fukushima Daiichi Nuclear Power Station accident. It is therefore desirable to promote decommissioning of facilities that have reached the end of their productive life in order to reduce risk and maintenance costs. However, the progress of facility decommissioning require large amount of money and radioactive waste storage space. In order to address these issues, JAEA has formulated a "The Medium/Long-Term Management Plan of JAEA Facilities" with three pillars: (1) consolidation and prioritization of facilities, (2) assurance of facility safety, and (3) back-end countermeasures. In this plan, Plutonium Fuel Fabrication Facility has been selected as primary decommissioned facility, and dismantling of equipment in the facilities have been underway. In this report, size reduction activities of the glove box W-9 and a part of tunnel F-1, which was connected to W-9, are presented, and the obtained findings are highlighted. The glovebox W-9 had oxidation & reduction furnace, and pellet crushing machine as equipment interior. The duration of activity took six years from February 2014 to February 2020, including suspended period of 4 years due to the enhanced authorization approval process.
Murota, Kento*; Aoyagi, Noboru; Mei, H.; Saito, Takumi*
Applied Geochemistry, 152, p.105620_1 - 105620_11, 2023/05
Times Cited Count:4 Percentile:59.97(Geochemistry & Geophysics)Mei, H.; Aoyagi, Noboru; Saito, Takumi*; Kozai, Naofumi; Sugiura, Yuki; Tachi, Yukio
Applied Geochemistry, 136, p.105178_1 - 105178_8, 2022/01
Times Cited Count:20 Percentile:90.52(Geochemistry & Geophysics)Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Toyama, Takeshi*; Yamamoto, Noboru*; et al.
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1235 - 1239, 2019/07
After the summer shutdown in 2018, the J-PARC restarted user operation in late October. While beam power to the Materials and Life Science Experimental Facility (MLF) was 500 kW as before the summer shutdown, linac beam current was increased from 40 to 50 mA. Operation of the Main Ring (MR) was suspended due to the modification and/or maintenance of the Superkamiokande (neutrino detector) and Hadron experimental facility. The user operation was resumed in the middle of February for the Hadron experimental facility at 51 kW. But on March 18, one of the bending magnets in the beam transport line to the MR had a failure. It was temporary recovered and restored beam operation on April 5, but the failure occurred again on April 24 and the beam operation of the MR was suspended. In the fiscal year of 2018, the availabilities for the MLF, neutrino and hadron facilities are 94%, 86%, and 74%, respectively.
Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Yoshii, Masahito*; Yamamoto, Noboru*; Koseki, Tadashi*
Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1317 - 1321, 2018/08
After the summer shutdown in 2017, the J-PARC restarted user operation in late October. The Materials and Life Science Experimental Facility (MLF) used a spare target and the beam power was limited to 150-200kW. The target was replaced with a new one in the summer shutdown. The beam power was for user operation gradually increased from 300 kW to 500 kW. We have successfully demonstrated 1MW 1hour operation in July 2018. The beam power for the neutrino experimental facility (NU) was 440 kW to 470 kW. The beam was delivered to the hadron experimental facility (HD) from January to February in 2018. The repetition rate of the main ring was shortened from 5.52 to 5.20 seconds, the beam power was increased from 44 to 50 kW. From March 2018, we delivered to the NU at 490 kW stably. In the fiscal year of 2017, the availabilities for the MLF, NU and HD are 93%, 89% and 66%, respectively.
Hasegawa, Kazuo; Hayashi, Naoki; Oguri, Hidetomo; Yamamoto, Kazami; Kinsho, Michikazu; Yamazaki, Yoshio; Naito, Fujio; Koseki, Tadashi; Yamamoto, Noboru; Yoshii, Masahito
Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.1038 - 1040, 2018/06
Hasegawa, Kazuo; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami; Hayashi, Naoki; Yamazaki, Yoshio; Naito, Fujio*; Hori, Yoichiro*; Yamamoto, Noboru*; Koseki, Tadashi*
Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1317 - 1321, 2017/12
After the summer shutdown in 2016, the J-PARC restarted user operation late in October for the neutrino experiments (NU) and early in November for the materials and life science experimental facility (MLF). The beam power for the NU was 420 kW in May 2016, but increased to 470 kW in February 2017 thanks to the change and optimization of operation parameters. For the hadron experimental facility (HD), we started beam tuning in April, but suspended by a failure of the electro static septum. After the treatment, we delivered beam at the power of 37 kW. We delivered beam at 150kW for the MLF. In the fiscal year of 2016, the linac, the 3 GeV synchrotron (RCS) and the MLF were stable and the availability was high at 93%. On the contrary, the main ring has several failures and the availabilities were 77% and 84% for NU and HD, respectively.
Hasegawa, Kazuo; Hayashi, Naoki; Oguri, Hidetomo; Yamamoto, Kazami; Kinsho, Michikazu; Yamazaki, Yoshio; Naito, Fujio*; Koseki, Tadashi*; Yamamoto, Noboru*; Hori, Yoichiro*
Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.2290 - 2293, 2017/06
The J-PARC is a high intensity proton facility and the accelerator consists of a 400 MeV linac, a 3 GeV Rapid Cycling Synchrotron (RCS) and a 30 GeV Main Ring Synchrotron (MR). We have taken many hardware upgrades such as front end replacement and energy upgrade at the linac, vacuum improvement, collimator upgrade, etc. The beam powers for the neutrino experiment and hadron experiment from the MR have been steadily increased by tuning and reducing beam losses. The designed 1 MW equivalent beam was demonstrated and user program was performed at 500 kW from the RCS to the neutron and muon experiments. We have experienced many failures and troubles, however, to impede full potential and high availability. In this report, operational performance and status of the J-PARC accelerators are presented.
Saito, Takumi*; Aoyagi, Noboru; Terashima, Motoki
Journal of Nuclear Science and Technology, 54(4), p.444 - 451, 2017/04
Times Cited Count:7 Percentile:52.01(Nuclear Science & Technology)Humic substances (HSs) are ubiquitous in various environments including deep underground and play an important role in the speciation and mobility of radionuclides. The binding of Eu, a chemical homologue of trivalent actinide ions, to HSs isolated from sedimentary groundwater at -250 m below the surface was studied by time-resolved laser fluorescence spectroscopy combined with parallel factor analysis (PARAFAC) as a function of pH and salt concentration. PARAFAC modeling reveals the presence of multiple factors that corresponds to different Eu
species. These factors resemble those observed for Eu
binding to HSs from surface environments; however, detailed comparison shows that there are some particularities in Eu
binding to the deep groundwater HSs. The distribution coefficients (
) of Eu
binding to the HSs calculated from the PARAFAC modeling exhibits a rather strong salt effect. At 0.01 M NaClO
the
values are relatively large and comparable to those to the surface HSs; they are decreaed at 0.1 M NaClO
by more than an order of the magnitude. The
values are larger for humic acid fraction of the deep underground HSs than fulvic acid over the entire range of pH and salt concentration investigated in this study.
Sasaki, Takayuki*; Ueda, Kenyo*; Saito, Takumi; Aoyagi, Noboru; Kobayashi, Taishi*; Takagi, Ikuji*; Kimura, Takaumi; Tachi, Yukio
Journal of Nuclear Science and Technology, 53(4), p.592 - 601, 2016/04
Times Cited Count:15 Percentile:77.64(Nuclear Science & Technology)The influences of pH and the concentrations of Eu and NaNO
on the sorption of Eu
to Na-montmorillonite were investigated through batch sorption measurements and time-resolved laser fluorescence spectroscopy (TRLFS). The pH had a little effect on the distribution coefficients (Kd) in 0.01 M NaNO
, whereas the Kd strongly depended on pH at 1 M NaNO
. A cation exchange model combined with a one-site non-electrostatic surface complexation model was successfully applied to the measured Kd. The TRLFS spectra of Eu
sorbed were processed by parallel factor analysis (PARAFAC), which corresponded to one outer-sphere (factor A) and two inner-sphere (factor B and C) complexes. It turned out that factors A and B correspond to Eu
sorbed by ion exchange sites and inner-sphere complexation with hydroxyl groups of the edge faces, respectively. Factor C became dominant at relatively high pH and ionic strength and likely correspond to the precipitation of Eu(OH)
on the surface.
Takahashi, Naoki; Yoshinaka, Kazuyuki; Harada, Akio; Yamanaka, Atsushi; Ueno, Takashi; Kurihara, Ryoichi; Suzuki, Soju; Takamatsu, Misao; Maeda, Shigetaka; Iseki, Atsushi; et al.
Nihon Genshiryoku Gakkai Homu Peji (Internet), 64 Pages, 2016/00
no abstracts in English
Hasegawa, Noboru; Nishikino, Masaharu; Tomita, Takuro*; Onishi, Naofumi*; Ito, Atsushi*; Eyama, Tsuyoshi*; Kakimoto, Naoya*; Izutsu, Rui*; Minami, Yasuo*; Baba, Motoyoshi*; et al.
X-Ray Lasers and Coherent X-Ray Sources; Development and Applications XI (Proceedings of SPIE, Vol.9589), p.95890A_1 - 95890A_8, 2015/09
Times Cited Count:1 Percentile:53.67(Optics)We have improved a soft X-ray laser (SXRL) interferometer synchronized with a Ti:Sapphire laser pulse to observe the single-shot imaging of the nano-scaled structure dynamics of the laser induced materials. By the precise imaging optics and double time fiducial system having been installed, the lateral resolution on the sample surface and the precision of the temporal synchronization between the SXRL and Ti:Sapphire laser pulses were improved to be 700 nm and 2 ps, respectively. By using this system, the initial stage (before 200 ps) of the ablation process of the Pt surface pumped by 80 fs Ti:Sapphire laser pulse was observed by the comparison between the soft X-ray reflective image and interferogram. We have succeeded in the direct observation of the unique ablation process around the ablation threshold such as the rapid increase of the surface roughness and surface vibration.
Nishikino, Masaharu; Kawachi, Tetsuya; Hasegawa, Noboru; Ishino, Masahiko; Minami, Yasuo*; Suemoto, Toru*; Onishi, Naofumi*; Ito, Atsushi*; Sato, Katsutoshi*; Faenov, A.*; et al.
X-Ray Lasers and Coherent X-Ray Sources; Development and Applications XI (Proceedings of SPIE, Vol.9589), p.958902_1 - 958902_7, 2015/09
Saito, Takumi; Terashima, Motoki; Aoyagi, Noboru; Nagao, Seiya*; Fujitake, Nobuhide*; Onuki, Toshihiko
Environmental Science; Processes & Impacts, 17(8), p.1386 - 1395, 2015/08
Times Cited Count:9 Percentile:30.10(Chemistry, Analytical)The deep groundwater HSs were different from surface HSs, having high aliphaticities, sulfur contents, and small molecular sizes. The amounts of their acidic functional groups were comparable to or slightly larger than those of surface HSs; however, the magnitude of Cu binding to the deep groundwater HSs was smaller. The NICA-Donnan model attributed this to the binding of Cu
to chemically homogeneous carboxylic-type sites via mono-dentate coordination at relatively low pH. The binding mode tended to shift to multi-dentate coordination with carboxylic-type and probably more heterogeneous alcoholic hydroxide-type groups at higher pH. This study shows the particularity of the deep groundwater HSs in terms of their physicochemical and ion-binding properties, compared with surface HSs.
Hasegawa, Noboru; Tomita, Takuro*; Nishikino, Masaharu; Eyama, Tsuyoshi*; Kakimoto, Naoya*; Minami, Yasuo*; Baba, Motoyoshi*; Onishi, Naofumi*; Ito, Atsushi*; Kawachi, Tetsuya; et al.
JAEA-Conf 2015-001, p.17 - 20, 2015/07
We have succeeded in simultaneous observation of the ablation front and the expansion front with thin filmy structure in the femto-second laser ablation process of a gold target by using the 13.9 nm soft X-ray probe (incident angle to the sample 70 deg) with soft X-ray interferometer. The dependence on the laser local fluence and materials was obtained by the comparison between gold and tungsten.