検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 109 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

報告書

2018年度夏期休暇実習報告; HTTR炉心を用いた原子力電池に関する予備的検討; 核設計のための予備検討

石塚 悦男; 松中 一朗*; 石田 大樹*; Ho, H. Q.; 石井 俊晃; 濱本 真平; 高松 邦吉; Kenzhina, I.*; Chikhray, Y.*; 近藤 篤*; et al.

JAEA-Technology 2019-008, 12 Pages, 2019/07

JAEA-Technology-2019-008.pdf:2.37MB

2018年度の夏期休暇実習として、HTTR炉心を原子力電池に見立てた場合の核的な予備検討を実施した。この結果、熱出力2MWで約30年、3MWで約25年、4MWで約18年、5MWで約15年の運転が可能であるこが明らかとなった。また、熱的な予備検討として、自然循環冷却かつ可動機器のない発電システムを有する原子力電池のイメージを提案した。今後は、次年度の夏期休暇実習として更に検討を進め、原子力電池の成立性について検討する予定である。

論文

Improvement of heat-removal capability using heat conduction on a novel reactor cavity cooling system (RCCS) design with passive safety features through radiation and natural convection

高松 邦吉; 松元 達也*; Liu, W.*; 守田 幸路*

Annals of Nuclear Energy, 122, p.201 - 206, 2018/12

 パーセンタイル:100(Nuclear Science & Technology)

輻射及び自然対流による受動的安全性を持つ革新的な原子炉圧力容器冷却設備(RCCS)を提案した。このRCCSは、連続した2つの閉空間(RPV周囲にある圧力容器室、大気と熱交換を行う冷却室)から構成される。また、RPVからの放出熱を、できるだけ輻射を用いて効率的に除去するため、今までに無い新しい形状を採用している。さらに、作動流体及び最終ヒートシンクとして空気を用いることで、崩壊熱除去を行う際、それら作動流体及びヒートシンクを失う可能性が大幅に低減される。本研究では、熱伝導を利用したRCCSの除熱能力の向上を目指した結果、除熱できる熱流束が2倍となり、RCCSの高さを半分に、または熱出力を2倍にすることが可能となった。

論文

Experimental study on heat removal performance of a new Reactor Cavity Cooling System (RCCS)

細見 成祐*; 明石 知泰*; 松元 達也*; Liu, W.*; 守田 幸路*; 高松 邦吉

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 7 Pages, 2018/11

受動的安全性を備えた新しい炉容器冷却システム(RCCS)を提案する。RCCSは連続した2つの閉じた領域から構成される。1つは原子炉圧力容器(RPV)を囲む領域、もう1つは大気と熱交換をする冷却領域である。新しいRCCSはRPVから発生した熱を輻射や自然対流によって除去する。最終的なヒートシンクは大気であるため、電気的または機械的に駆動する機器は不要である。RCCSの性能を理解するためにスケールモデルを使用して実験を開始した。ヒーター壁と冷却壁に異なる放射率を設定し、3つの実験を実施した。ヒーターから放出された総熱出力および壁面温度分布に関するデータが得られた。モンテカルロ法を使ってヒーターから放出された総熱出力に対する放射の寄与を評価した。ヒーター壁を黒く塗った場合、総熱出力に対する放射の寄与は約60%まで増加できた。つまり、実機においてRPVの壁面の放射率を高くすることは有効である。同時に、冷却領域の壁面の放射率も高くすれば、大気への放射を増加できるだけでなく、RCCS内の対流熱伝達も促進できることがわかった。

論文

Thermal-hydraulic analyses of the High-Temperature engineering Test Reactor for loss of forced cooling at 30% reactor power

高松 邦吉

Annals of Nuclear Energy, 106, p.71 - 83, 2017/08

固有の安全性を持つ高温ガス炉である高温工学試験研究炉(HTTR)を用いて、強制冷却喪失(LOFC)事象を模擬した安全性実証試験を実施した。本論文では、冷却材流量が定格の45t/hから0t/hまで低下し、制御棒が炉心に挿入されず、原子炉出力制御系が作動しない条件における、原子炉出力9MWからの強制冷却喪失時の熱流動特性を示す。解析により、1次純化設備による強制対流の下降流は、燃料体内で発生した自然対流による上昇流を抑え込むが、原子炉出口冷却材温度に与える影響を除いて、炉内の熱流動特性に与える影響は小さいことを明らかにした。以上により、原子炉圧力容器内の3次元熱流動特性を定量的に示すことができた。

論文

Determination of reactivity and neutron flux using modified neural network for HTGR

Subekti, M.*; 工藤 和彦*; 鍋島 邦彦; 高松 邦吉

Atom Indonesia, 43(2), p.93 - 102, 2017/08

HTTR炉心の中心制御棒を引き抜く反応度添加抜試験を評価する際、1点炉近似の動特性モデルを用いた解析手法は、最も汎用的である。一方、制御棒が引き抜かれると同時に、将来の反応度および中性子束の変化予測値を速やかに出力するには、非常に速い処理速度を持つ別の解析手法を必要とする。そこで、Time Delayed Neural Network (TDNN)とJordan Recurrent Neural Network (JordanRNN)を組み合わせ、新たにTD-Jordan RNNというニューラルネットワーク・モデルを作成し、HTTRの試験データをオフラインで十分学習させた。その結果、反応度添加試験時の反応度および中性子束の変化予測値を速やかに出力することができた。

論文

New reactor cavity cooling system (RCCS) with passive safety features; A Comparative methodology between a real RCCS and a scaled-down heat-removal test facility

高松 邦吉; 松元 達也*; 守田 幸路*

Annals of Nuclear Energy, 96, p.137 - 147, 2016/10

 被引用回数:1 パーセンタイル:76.09(Nuclear Science & Technology)

東京電力の福島第一原子力発電所事故(以下、福島事故)後、深層防護の観点から炉心損傷の防止対策が重要になった。そこで、動的機器および非常用電源等を必要とせず、福島事故のようにヒートシンクを喪失することのない、受動的安全性を持つ原子炉圧力容器の冷却設備を提案する。本冷却設備は安定して冷却できるため、定格運転時の一部の放出熱、および炉停止後の一部の崩壊熱を、常に安定的に受動的に除去できる。特に事故時において、本冷却設備が持つ冷却能力の範囲まで崩壊熱が減少した際、それ以降は非常用電源等が必要なくなり、長期間(無限時間)に渡って受動的な除熱が可能となる。一方、本冷却設備の優れた除熱性能を示すために、等倍縮小した除熱試験装置を製作し、ふく射および自然対流に関する実験条件をグラスホフ数を用いて決定することもできた。

論文

高温工学試験研究炉(HTTR)の内部構造を可視化成功; ミューオンを利用した非接触・非破壊検査技術

高松 邦吉

非破壊検査, 65(5), p.207 - 210, 2016/05

特願 2010-166333   公報

福島第一原子力発電所の事故前、宇宙線ミューオンを使って原子番号の違いを検出できないか検討した結果、散乱法を用いた宇宙線ミューオンの可視化技術は、黒鉛ブロック、原子炉圧力容器、ウラン(燃料体)、空気を識別することができた。また、福島第一原子力発電所の事故後、燃料デブリの状況を把握するため、透過法を用いた宇宙線ミューオンの可視化技術を提案した結果、原子力機構のHTTRの原子炉圧力容器(RPV)および原子炉格納容器(CV)の外側から、炉心および炉内構造物を可視化することができた。

論文

New reactor cavity cooling system with a novel shape and passive safety features

高松 邦吉; 松元 達也*; 守田 幸路*

Proceedings of 2016 International Congress on Advances in Nuclear Power Plants (ICAPP 2016) (CD-ROM), p.1250 - 1257, 2016/04

東京電力の福島第一原子力発電所事故(以下、福島事故)後、深層防護の観点から炉心損傷の防止対策が重要になった。そこで、動的機器および非常用電源等を必要とせず、福島事故のようにヒートシンクを喪失することのない、受動的安全性を持つ原子炉圧力容器の冷却設備を提案する。本冷却設備は安定して冷却できるため、定格運転時の一部の放出熱、および炉停止後の一部の崩壊熱を、常に安定的に受動的に除去できる。特に事故時において、本冷却設備が持つ冷却能力の範囲まで崩壊熱が減少した際、それ以降は非常用電源等が必要なくなり、長期間(無限時間)に渡って受動的な除熱が可能となる。一方、本冷却設備の優れた除熱性能を示すために、等倍縮小した除熱試験装置を製作し、ふく射および自然対流に関する実験条件をグラスホフ数を用いて決定することもできた。

論文

高温工学試験研究炉(HTTR)の内部構造を可視化する; ミューオンを利用した非接触・非破壊検査技術の提案

高松 邦吉

放計協ニュース, (56), p.2 - 4, 2015/10

特願 2010-166333   公報

福島第一原子力発電所の事故前、宇宙線ミューオンを使って原子番号の違いを検出できないか検討した結果、散乱法を用いた宇宙線ミューオンの可視化技術は、黒鉛ブロック, 原子炉圧力容器, ウラン(燃料体), 空気を識別することができた。また、福島第一原子力発電所の事故後、燃料デブリの状況を把握するため、透過法を用いた宇宙線ミューオンの可視化技術を提案した結果、原子力機構のHTTRの原子炉圧力容器(RPV)および原子炉格納容器(CV)の外側から、炉心および炉内構造物を可視化することができた。

論文

HTGR燃料ブロック冷却流路の流動特性の研究

辻 延昌*; 大橋 一孝*; 田澤 勇次郎*; 橘 幸男; 大橋 弘史; 高松 邦吉

FAPIG, (190), p.20 - 24, 2015/07

強制冷却喪失事故時、高温ガス炉の崩壊熱は輻射、熱伝導および自然対流で除去される。そのため、受動的な除熱量を評価し高温ガス炉の固有の安全性を確認することは重要である。本論文では、汎用熱流動解析コードを用いて、通常運転時の強制対流および強制冷却喪失事故時の自然対流を解析した。その際、燃料温度は自然対流に大きく影響されるため、炉心領域の自然対流を精度良く評価することが重要である。また、マルチホール型燃料とピンインブロック型燃料の熱流動特性についても比較を行った。

論文

A Rapid evaluation method of the heat removed by a VCS before rise-to-power tests

高松 邦吉

Journal of Thermal Science, 24(3), p.295 - 301, 2015/06

 被引用回数:1 パーセンタイル:86.8(Thermodynamics)

出力上昇試験前、原子炉圧力容器(RPV)からの放熱量、または炉容器冷却設備(VCS)による除熱量の実測値は当然得ることができない。よって、高温工学試験研究炉(HTTR)が供給する原子炉出口冷却材温度を出力上昇試験前に評価することは運転員にとって困難である。一方、原子炉出口冷却材温度が967 ($$^{circ}$$C)に達すると、原子炉スクラムに至るため、RPVからの放熱量やVCSによる除熱量の実測値が出力上昇試験中に変化した場合、原子炉出力100(%)時, 30(MW)時におけるVCSによる除熱量が幾らになるのか、原子炉出口冷却材温度が幾らになるのか、運転員は直ぐに評価する必要がある。そこで本論文では、運転員が迅速にVCSによる除熱量を評価できる方法を提案する。

論文

ミューオンを利用して高温工学試験研究炉(HTTR)の内部構造を可視化する; 非接触・非破壊で原子炉の内部構造を検査する

高松 邦吉

日本原子力学会誌, 57(6), p.389 - 393, 2015/06

特願 2010-166333   公報

福島第一原子力発電所の事故前、宇宙線ミューオンを使って原子番号の違いを検出できないか検討した結果、散乱法を用いた宇宙線ミューオンの可視化技術は、黒鉛ブロック、原子炉圧力容器、ウラン(燃料体)、空気を識別することができた。また、福島第一原子力発電所の事故後、燃料デブリの状況を把握するため、透過法を用いた宇宙線ミューオンの可視化技術を提案した結果、原子力機構のHTTRの原子炉圧力容器(RPV)および原子炉格納容器(CV)の外側から、炉心および炉内構造物を可視化することができた。

論文

Cosmic-ray muon radiography for reactor core observation

高松 邦吉; 竹上 弘彰; 伊藤 主税; 鈴木 敬一*; 大沼 寛*; 日野 竜太郎; 奥村 忠彦*

Annals of Nuclear Energy, 78, p.166 - 175, 2015/04

 被引用回数:3 パーセンタイル:53.75(Nuclear Science & Technology)

福島第一原子力発電所の燃料デブリの状況把握に向けた炉内可視化の技術開発として、原子炉内可視化に宇宙線ミューオンの適用性を検証するため、原子力機構のHTTRを対象とした炉内可視化予備試験を実施した。その結果、原子炉圧力容器(RPV)および原子炉格納容器(CV)の外側から、同時計数法を用いた宇宙線ミューオン可視化技術により、炉心および炉内構造物を可視化できた。

論文

New reactor cavity cooling system having passive safety features using novel shape for HTGRs and VHTRs

高松 邦吉; Hu, R.*

Annals of Nuclear Energy, 77, p.165 - 171, 2015/03

 被引用回数:6 パーセンタイル:28.02(Nuclear Science & Technology)

東京電力の福島第一原子力発電所事故(以下、福島事故)後、深層防護の観点から炉心損傷の防止対策が重要になった。安全上優れた特性を有する冷却設備に関する研究は、極めて重要なテーマである。そこで、動的機器および非常用電源等を必要とせず、福島事故のようにヒートシンクを喪失することのない、受動的安全性を持つ原子炉圧力容器の冷却設備を提案する。本冷却設備は変動がなく、安定して冷却できるため、定格運転時の一部の放出熱、および炉停止後の一部の崩壊熱を、常に安定的に受動的に除去できることがわかった。特に事故時において、本冷却設備が持つ冷却能力の範囲まで崩壊熱が減少した際、それ以降は非常用電源等が必要なくなり、長期間(無限時間)に渡って受動的な除熱が可能となる。

論文

New reactor cavity cooling system using novel shape for HTGRs and VHTRs

高松 邦吉; Hu, R.*

Proceedings of 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10) (USB Flash Drive), 12 Pages, 2014/12

東京電力福島第一原子力発電所事故(以下、福島事故)後、深層防護の観点から炉心損傷の防止対策が重要になった。安全上優れた特性を有する冷却設備に関する研究は、極めて重要なテーマである。そこで、動的機器および非常用電源等を必要とせず、福島事故のようにヒートシンクを喪失することのない、受動的安全性を持つ原子炉圧力容器の冷却設備を提案する。本冷却設備は変動がなく、安定して冷却できるため、定格運転時の一部の放出熱、および炉停止後の一部の崩壊熱を、常に安定的に受動的に除去できることがわかった。特に事故時において、本冷却設備が持つ冷却能力の範囲まで崩壊熱が減少した際、それ以降は非常用電源等が必要なくなり、長期間(無限時間)に渡って受動的な除熱が可能となる。

論文

Experiments and validation analyses of HTTR on loss of forced cooling under 30% reactor power

高松 邦吉; 栃尾 大輔; 中川 繁昭; 高田 昌二; Yan, X.; 沢 和弘; 坂場 成昭; 國富 一彦

Journal of Nuclear Science and Technology, 51(11-12), p.1427 - 1443, 2014/11

 被引用回数:8 パーセンタイル:25.95(Nuclear Science & Technology)

固有の安全性を持つ高温ガス炉である高温工学試験研究炉(HTTR)において、強制冷却喪失事象を模擬した安全性実証試験を実施した。本論文では、冷却材流量が定格の45t/hから0t/hまで低下し、制御棒が炉心に挿入されず、原子炉出力制御系が作動しない条件における、原子炉出力9MWからの強制冷却喪失(LOFC)時の解析結果を示す。解析より緊急炉心停止系が作動しなくても、炉心の負の反応度フィードバック特性により、原子炉出力がすぐに崩壊熱レベルまで低下し、炉心構造材の高い熱容量により炉内の温度分布がゆっくり変化することを明らかにした。以上により高温ガス炉固有の安全性を示すことができた。

論文

Spontaneous stabilization of HTGRs without reactor scram and core cooling; Safety demonstration tests using the HTTR: Loss of reactivity control and core cooling

高松 邦吉; Yan, X.; 中川 繁昭; 坂場 成昭; 國富 一彦

Nuclear Engineering and Design, 271, p.379 - 387, 2014/05

 被引用回数:5 パーセンタイル:43.1(Nuclear Science & Technology)

固有の安全性を持つ高温ガス炉である高温工学試験研究炉(HTTR)において、強制冷却喪失事象を模擬した安全性実証試験を実施した。本論文では冷却材流量が定格の45t/hから0t/hまで低下し、制御棒が炉心に挿入されず、原子炉出力制御系が作動しない条件における、原子炉出力9MWからの強制冷却喪失(LOFC)時の解析結果を示す。解析より緊急炉心停止系が作動しなくても、炉心の負の反応度フィードバック特性により、原子炉出力がすぐに崩壊熱レベルまで低下し、炉心構造材の高い熱容量により炉内の温度分布がゆっくり変化することを明らかにした。以上により高温ガス炉固有の安全性を示すことができた。

論文

宇宙線ミューオンによるHTTR内部構造の可視化予備試験

竹上 弘彰; 高松 邦吉; 伊藤 主税; 日野 竜太郎; 鈴木 敬一*; 大沼 寛*; 奥村 忠彦*

日本原子力学会和文論文誌, 13(1), p.7 - 16, 2014/03

東京電力福島第一原子力発電所(福島第一原発)の事故では、溶融・固化した燃料がデブリとなり、その一部は圧力容器を貫通し格納容器内に落下していると推定されており、燃料デブリの状況把握が重要な課題となっている。本研究では、原子炉の外側から燃料デブリの位置情報を取得するための一方策として、ミューオンを用いた原子炉内部構造の可視化の可能性を探るため、既存のミューオン測定装置を用いて日本原子力研究開発機構の高温工学試験研究炉(HTTR)内部構造の可視化予備試験を行った。さらに、予備試験の結果を基に、福島第一原発の可視化に適用する場合の課題を抽出し、対策を検討した。その結果、同時計数法を用いた宇宙線ミューオン可視化技術により、原子炉内の炉心、コンクリート壁といった特徴的な構造を可視化できることを示した。また、福島第一原発敷地内での測定における課題と対策を検討した結果、既存技術による装置の改造等で、新たな技術開発を行うことなく対応可能であることを示した。

報告書

オンサイト非破壊検査技術の開発; HTTRの内部構造可視化予備試験

竹上 弘彰; 寺田 敦彦; 野口 弘喜; 上地 優; 小野 正人; 高松 邦吉; 伊藤 主税; 日野 竜太郎; 鈴木 敬一*; 大沼 寛*; et al.

JAEA-Research 2013-032, 25 Pages, 2013/12

JAEA-Research-2013-032.pdf:3.56MB

本研究では、原子炉建屋外から非破壊で燃料デブリの位置情報を取得可能な技術の候補として、宇宙線ミューオンを用いた非破壊検査技術に着目した。この技術は地盤探査を目的として開発された技術であることから、原子炉内部調査への適用性を検証するため、既存のミューオン受光システムを用いて、大洗研究開発センターに設置されている高温工学試験研究炉(HTTR)の内部構造可視化予備試験を実施した。可視化予備試験の結果、同時計数法を用いたミューオン非破壊検査技術により、HTTR内部の炉心、コンクリートのような高密度の構造物が判別可能であることを示した。また、オンサイト測定における課題を検討した結果、既存装置の改良により対応可能であることを示した。

論文

宇宙線ミュー粒子による原子炉内部構造可視化試験

鈴木 敬一*; 大沼 寛*; 竹上 弘彰; 高松 邦吉; 日野 竜太郎; 奥村 忠彦*

社団法人物理探査学会第129回(平成25年度秋季)学術講演会講演論文集, p.131 - 134, 2013/10

福島第一原子力発電所では、事故により核燃料が冷却できず溶融したため、燃料デブリが原子炉格納容器の下部に溜まっていると推定される。廃炉のためには、この燃料デブリを取り出す必要があるが、現時点でその大きさや場所は不明である。しかし、燃料デブリに含まれるウランやプルトニウムは密度が大きく、宇宙線ミュー粒子の吸収が大きくなることから、高密度の物質を容易に透過する宇宙線ミュー粒子を用いることで、非接触かつ非破壊状態で原子炉内部の可視化ができると考えられる。そこで、高温工学試験研究炉(HTTR)の原子炉格納容器の外側に5つの測定点を設け、1測定点あたり5方向の扇形測線を設定し、HTTRを透過した宇宙線ミュー粒子を計測した。その結果、原子炉格納容器内にある原子炉圧力容器に相当する位置で高密度領域が確認され、宇宙線ミュー粒子による非破壊検査技術の可能性を示すことができた。今後も、福島第一原子力発電所での実用化に向けて研究開発を進める予定である。

109 件中 1件目~20件目を表示