検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 36 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Grain size independence of cryogenic strain recovery behavior in high-Zr $$beta$$-Ti alloy

Zhang, B.*; Xin, S.*; Huang, M.*; Mao, W.; Jia, W.*; Li, Q.*; Li, S.*; Zhang, S.*; Mao, C.*

Materials Science & Engineering A, 890, p.145898_1 - 145898_7, 2024/01

 被引用回数:0 パーセンタイル:0(Nanoscience & Nanotechnology)

本研究では、高Zr-$$beta$$-Ti合金の変形温度を300Kから77Kに下げると回復ひずみが2.25%から5.5%に大幅に増加することを報告した。この合金の超弾性は77Kにおいて$$beta$$粒径に依存しないことがわかった。その結果、粗粒試料は77Kで超微粒試料とほぼ同じ超弾性を示すことがわかった。変形誘起マルテンサイト変態と転位すべりの相対的な容易さは77Kで大きく変化し、転位すべりは強く抑制され、超弾性に対する結晶粒の微細化の影響は影を潜めた。

論文

Microscopic origin of the spin-reorientation transition in the kagome topological magnet TbMn$$_{6}$$Sn$$_{6}$$

Huang, Z.*; Wang, W.*; Ye, H.*; Bao, S.*; Shangguan, Y.*; Liao, J.*; Cao, S.*; 梶本 亮一; 池内 和彦*; Deng, G.*; et al.

Physical Review B, 109(1), p.014434_1 - 014434_9, 2024/01

 被引用回数:0 パーセンタイル:0.01(Materials Science, Multidisciplinary)

TbMn$$_{6}$$Sn$$_{6}$$ is a correlated topological magnet with a Mn-based kagome lattice, in which a Chern gap opens at the Dirac point at low temperatures. The magnetic moment direction of the ferrimagnetic order changes from in the kagome plane to the out-of-plane upon cooling, which is essential for generating the Chern gap, but the underlying mechanism for the spin reorientation remains elusive. Here, we investigate the spin-reorientation transition in TbMn$$_{6}$$Sn$$_{6}$$ using neutron scattering. We provide direct evidence for the spin-reorientation transition and unveil the coexistence of two Tb modes at 200 K. To account for these results, we put forward a model based on SU(N) spin-wave theory, in which there is a temperature evolution of the ground state Tb $$4f$$ orbitals, driven by the crystalline electric field, single-ion anisotropy, and exchange interactions between Tb and Mn ions. Our findings shed light on the complex magnetism of TbMn$$_{6}$$Sn$$_{6}$$, despite its relatively simple ground state magnetic structure, and provide insights into the mechanisms for tuning magnetic topological materials.

論文

Key role of temperature on delamination in solid-state additive manufacturing via supersonic impact

Wang, Q.*; Ma, N.*; Huang, W.*; Shi, J.*; Luo, X.-T.*; 冨高 宙*; 諸岡 聡; 渡邊 誠*

Materials Research Letters (Internet), 11(9), p.742 - 748, 2023/09

Cold spray (CS) has emerged as a representative of solid-state additive manufacturing (AM) via supersonic impact. It enables a high deposition rate of solid-state microparticles. Delamination, however, tends to occur when depositing too thick; this remains to be conquered. Here, a CS-like process, warm spray (WS), was presented. Interestingly, it was found that the appropriate increase in particle temperature can effectively reduce the residual stress amplitude, relieving the concentrated tensile stress and safeguarding the additively manufactured components from interfacial delamination even when depositing too thick. The key role of temperature on delamination was identified in solid-state AM via supersonic impact.

論文

Direct observation of topological magnon polarons in a multiferroic material

Bao, S.*; Gu, Z.-L.*; Shangguan, Y.*; Huang, Z.*; Liao, J.*; Zhao, X.*; Zhang, B.*; Dong, Z.-Y.*; Wang, W.*; 梶本 亮一; et al.

Nature Communications (Internet), 14, p.6093_1 - 6093_9, 2023/09

 被引用回数:2 パーセンタイル:57.37(Multidisciplinary Sciences)

Magnon polarons are novel elementary excitations possessing hybrid magnonic and phononic signatures, and are responsible for many exotic spintronic and magnonic phenomena. Despite long-term sustained experimental efforts in chasing for magnon polarons, direct spectroscopic evidence of their existence is hardly observed. Here, we report the direct observation of magnon polarons using neutron spectroscopy on a multiferroic Fe$$_{2}$$Mo$$_{3}$$O$$_{8}$$ possessing strong magnon-phonon coupling. Specifically, below the magnetic ordering temperature, a gap opens at the nominal intersection of the original magnon and phonon bands, leading to two separated magnon-polaron bands. Each of the bands undergoes mixing, interconverting and reversing between its magnonic and phononic components. We attribute the formation of magnon polarons to the strong magnon-phonon coupling induced by Dzyaloshinskii-Moriya interaction. Intriguingly, we find that the band-inverted magnon polarons are topologically nontrivial. These results uncover exotic elementary excitations arising from the magnon-phonon coupling, and offer a new route to topological states by considering hybridizations between different types of fundamental excitations.

論文

Tensile overload-induced texture effects on the fatigue resistance of a CoCrFeMnNi high-entropy alloy

Lam, T.-N.*; Chin, H.-H.*; Zhang, X.*; Feng, R.*; Wang, H.*; Chiang, C.-Y.*; Lee, S. Y.*; 川崎 卓郎; Harjo, S.; Liaw, P. K.*; et al.

Acta Materialia, 245, p.118585_1 - 118585_9, 2023/02

 被引用回数:8 パーセンタイル:78.27(Materials Science, Multidisciplinary)

The present study investigates the crystallographic-texture effects on the improved fatigue resistance in the CoCrFeMnNi high-entropy alloys (HEAs) with the full-size geometry of the ASTM Standards E647-99. We exploited X-ray nano-diffraction mapping to characterize the crystal-deformation levels ahead of the crack tip after stress unloading under both constant- and tensile overloaded-fatigue conditions. The crack-tip blunting-induced much higher deformation level was concentrated surrounding the crack-tip which delays the fatigue-crack growth immediately after a tensile overload. The predominant deformation texture orientation in the Paris regime was investigated, using electron backscatter diffraction and orientation distribution function analyses. The twinning formation-driven shear deformation gave rise to the development of the Goss-type texture within the plastic deformation regime under a tensile-overloaded-fatigue condition, which was attributed to enhance the crack deflection and thus the tensile induced crack-growth-retardation period in the CoCrFeMnNi HEA.

論文

Two-dimensional quantum universality in the spin-1/2 triangular-lattice quantum antiferromagnet Na$$_{2}$$BaCo(PO$$_{4}$$)$$_{2}$$

Sheng, J.*; Wang, L.*; Candini, A.*; Jiang, W.*; Huang, L.*; Xi, B.*; Zhao, J.*; Ge, H.*; Zhao, N.*; Fu, Y.*; et al.

Proceedings of the National Academy of Sciences of the United States of America, 119(51), p.e2211193119_1 - e2211193119_9, 2022/12

 被引用回数:4 パーセンタイル:56.47(Multidisciplinary Sciences)

Although considerable progress has been made in the theoretical understanding of the low-dimensional frustrated quantum magnets, experimental realizations of a well-established scaling analysis are still scarce. This is particularly true for the two-dimensional antiferromagnetic triangular lattices. Owing to the small exchange strength, the newly discovered compound Na$$_{2}$$BaCo(PO$$_{4}$$)$$_{2}$$ provides a rare opportunity for clarifying the quantum criticality in an ideal triangular lattice with quantum spin S=1/2. In addition to the establishment of the complete phase diagrams, the spin Hamiltonian with a negligible interplane interaction has been determined through the spin wave dispersion in the polarized state, which is consistent with the observation of a two-dimensional quantum critical point with the Bose-Einstein condensation of diluted free bosons.

論文

Estimating fine melt pool, coarse melt pool, and heat affected zone effects on the strengths of additive manufactured AlSi10Mg alloys

Lam, T.-N.*; Lee, A.*; Chiu, Y.-R.*; Kuo, H.-F.*; 川崎 卓郎; Harjo, S.; Jain, J.*; Lee, S. Y.*; Huang, E.-W.*

Materials Science & Engineering A, 856, p.143961_1 - 143961_9, 2022/10

 被引用回数:5 パーセンタイル:53.21(Nanoscience & Nanotechnology)

Fine melt pool (FMP), coarse melt pool (CMP), and heat affected zone (HAZ) are generally observed in the additive manufactured AlSi10Mg alloys. In this study, we demonstrated that the yield strength can be estimated by the combination of the sizes and volume fractions of FMP, CMP, HAZ together with the second-phase hardening. Two different AlSi10Mg alloys fabricated via powder bed fusion (PBF) process were prepared to examine the lattice strain evolution of constituent phases during uniaxial tensile loading via in-situ neutron diffraction measurements. The horizontally-built (Hz-built) exhibited a much better yield and tensile strength as well as elongation compared to the vertically-built (Vt-built) AlSi10Mg alloy. We reported empirical strength quantification based on the sizes and ratios of fine melt pool (FMP), coarse melt pool (CMP), and heat affected zone (HAZ) together with the possible failure mode to prevent early fracture in the additive manufactured alloys.

論文

First observation of the decay of the 13/2$$^+$$ isomer in $$^{183}$$Hg and $$B$$(${it M}$2) systematics of neutron transitions across the nuclear chart

Huang, H.*; Zhang, W. Q.*; Andreyev, A. N.; Liu, Z.*; Seweryniak, D.*; Li, Z. H.*; Guo, C. Y.*; Barzakh, A. E.*; Van Duppen, P.*; Andel, B.*; et al.

Physics Letters B, 833, p.137345_1 - 137345_8, 2022/10

 被引用回数:0 パーセンタイル:0.02(Astronomy & Astrophysics)

The decay of the 13/2$$^+$$ isomeric state in $$^{183}$$Hg was observed for the first time following the $$alpha$$ decay of the 13/2$$^+$$ isomer in $$^{187}$$Pb produced in the $$^{142}$$Nd$$(^{50}$$Cr$$, 2p3n)$$ reaction. Using $$alpha$$-$$gamma$$ delayed coincidence measurements, the half-life of this isomer was measured to be 290(30) $$mu$$s. This isomer is proposed to deexcite by an unobserved low-energy $$M$$2 transition to the known 9/2$$^-$$ member of a strongly prolate-deformed 7/2$$^-$$[514] band, followed by a 105-keV $$M$$1 transition to the bandhead. A lower limit of B($$M$$2)$$geq$$0.018 W.u. was deduced for the unobserved transition. The presumed retardation is proposed to be due to the notable shape change between the initial, nearly spherical, and the final, strongly deformed, states. A similar scenario is also considered for the 13/2$$^+$$ isomer in $$^{181}$$Hg, suggesting both are cases of shape isomers. The B($$M$$2) systematics of neutron transitions across the nuclear chart is discussed.

論文

Grain orientation dependence of deformation microstructure evolution and mechanical properties in face-centered cubic high/medium entropy alloys

吉田 周平*; Fu, R.*; Gong, W.; 池内 琢人*; Bai, Y.*; Feng, Z.*; Wu, G.*; 柴田 曉伸*; Hansen, N.*; Huang, X.*; et al.

IOP Conference Series; Materials Science and Engineering, 1249, p.012027_1 - 012027_6, 2022/08

 被引用回数:0 パーセンタイル:0.83(Metallurgy & Metallurgical Engineering)

This study revealed characteristics of the deformation behavior in high/medium entropy alloys (HEAs/MEAs) with face-centered cubic (FCC) structure. A Co$$_{60}$$Ni$$_{40}$$ alloy and a Co$$_{20}$$Cr$$_{40}$$Ni$$_{40}$$ MEA having low and high friction stresses (fundamental resistance to dislocation glide in solid solutions), respectively, but similar in other properties, including their stacking fault energy and grain sizes, were compared. The MEA exhibited a higher yield strength and work-hardening ability than those in the Co$$_{60}$$Ni$$_{40}$$ alloy at room temperature. Deformation microstructures of the Co$$_{60}$$Ni$$_{40}$$ alloy were composed of coarse dislocation cells (DCs) in most grains, and a few deformation twins (DTs) formed in grains with tensile axis (TA) nearly parallel to $$<$$111$$>$$. In the MEA, three microstructure types were found depending on the grain orientations: (1) fine DCs developed in TA$$sim$$//$$<$$100$$>$$-oriented grains; (2) planar dislocation structures (PDSs) formed in grains with other orientations; and (3) dense DTs adding to the PDSs developed in TA$$sim$$//$$<$$111$$>$$-oriented grains. The results imply difficulty in cross-slip of screw dislocations and dynamic recovery in the MEA, leading to an increase in the dislocation density and work-hardening rate. Our results suggest that FCC high-alloy systems with high friction stress inherently develop characteristic deformation microstructures advantageous for achieving high strength and large ductility.

論文

Identification of excited states in $$^{188}$$Bi and $$^{188}$$Po

Zhang, W. Q.*; Andreyev, A. N.; Liu, Z.*; Seweryniak, D.*; Huang, H.*; 他37名*

Physical Review C, 106(2), p.024317_1 - 024317_11, 2022/08

 被引用回数:1 パーセンタイル:30.99(Physics, Nuclear)

The neutron-deficient $$^{188}$$Bi and $$^{188}$$Po isotopes have been studied by $$gamma$$-ray spectroscopy using the recoil-decay tagging technique with the Argonne Gas-Filled Analyzer. A new 0.25(5)-micro second isomeric state and a prompt cascade formed by 319-, 366-, and 462-keV $$gamma$$ rays have been established on top of the (10$$^{-}$$) $$alpha$$-decaying isomer in $$^{188}$$Bi. The first excited (2$$^{+}$$) state in $$^{188}$$Po was identified, its excitation energy of 242(2) keV continues the nearly constant trend for the first 2$$^{+}$$ states in $$^{190,192,194}$$Po. The state is most likely a member of a prolate rotational band built on the ground state, albeit mixing with other coexisting configurations cannot be excluded. The new results obtained in the present work provide new information to shape coexistence in bismuth and polonium isotopes near the neutron midshell at $$N$$ = 104. In this mass region, a reduction in the prompt $$gamma$$-ray yield obtained with recoil decay tagging was observed for a few nuclides, and the possible reasons are presented.

論文

Magnetic properties and electronic configurations of Mn ions in the diluted magnetic semiconductor Ba$$_{1-x}$$K$$_x$$(Zn$$_{1-y}$$Mn$$_y$$)$$_2$$As$$_2$$ studied by X-ray magnetic circular dichroism and resonant inelastic X-ray scattering

鈴木 博人*; Zhao, G.*; 岡本 淳*; 坂本 祥哉*; Chen, Z.-Y.*; 野中 洋亮*; 芝田 悟朗; Zhao, K.*; Chen, B.*; Wu, W.-B.*; et al.

Journal of the Physical Society of Japan, 91(6), p.064710_1 - 064710_5, 2022/06

 被引用回数:0 パーセンタイル:0(Physics, Multidisciplinary)

The magnetic properties and the electronic excitations of the new diluted magnetic semiconductor Ba$$_{1-x}$$K$$_x$$(Zn$$_{1-y}$$Mn$$_y$$)$$_2$$As$$_2$$ have been studied by X-ray magnetic circular dichroism (XMCD) and resonant inelastic X-ray scattering (RIXS). The sum rule analysis of the XMCD spectra indicates that the Mn atoms are in the high-spin configurations of $$d^5$$, whereas the presence of competing ferromagnetic and antiferromagnetic interactions between the Mn ions reduces the net spin moment. Based on a comparison of the RIXS line shapes with those of Ga$$_{1-x}$$Mn$$_x$$As, it is concluded that the ground state of Mn in Ba$$_{1-x}$$K$$_x$$(Zn$$_{1-y}$$Mn$$_y$$)$$_2$$As$$_2$$ consists of both the $$3d^5 underline{L}$$ and $$3d^5$$ electron configurations.

論文

First observation of a shape isomer and a low-lying strongly-coupled prolate band in neutron-deficient semi-magic $$^{187}$$Pb

Zhang, W. Q.*; Andreyev, A. N.; Liu, Z.*; Seweryniak, D.*; Huang, H.*; Li, Z. H.*; Li, J. G.*; Guo, C. Y.*; 他34名*

Physics Letters B, 829, p.137129_1 - 137129_7, 2022/06

 被引用回数:4 パーセンタイル:74.12(Astronomy & Astrophysics)

Prompt and delayed $$gamma$$-ray spectroscopy of the neutron-deficient, semi-magic isotope $$^{187}$$Pb has been performed at the Argonne Gas-Filled Analyzer. A new 5.15(15)-$$mu$$s isomeric state at only 308 keV above the spherical 3/2$$^{-}$$ ground state is identified and classified as a shape isomer. A strongly-coupled band is observed on top of the isomer, which is nearly identical to the one built on the prolate 7/2$$^{-}$$[514] Nilsson state in the isotone $$^{185}$$Hg. Based on this similarity and on the result of the potential-energy surface calculations, the new isomer in $$^{187}$$Pb is proposed to originate from the same configuration. The retarded character of the 308-keV transition can be well explained by the significant difference between the prolate parent and spherical daughter configurations, leading to the shape isomerism. The combined results of the present work and the previous $$alpha$$-decay and laser spectroscopy studies present evidence for triple shape coexistence at low energy in the negative-parity configurations of $$^{187}$$Pb, which is well reproduced by the potential-energy surface calculations.

論文

Grain-size-dependent microstructure effects on cyclic deformation mechanisms in CoCrFeMnNi high-entropy-alloys

Luo, M.-Y.*; Lam, T.-N.*; Wang, P.-T.*; Tsou, N.-T.*; Chang, Y.-J.*; Feng, R.*; 川崎 卓郎; Harjo, S.; Liaw, P. K.*; Yeh, A.-C.*; et al.

Scripta Materialia, 210, p.114459_1 - 114459_7, 2022/03

 被引用回数:14 パーセンタイル:91.47(Nanoscience & Nanotechnology)

The effect of grain size on strain-controlled low-cycle fatigue (LCF) properties in the CoCrFeMnNi high-entropy alloys (HEAs) was investigated towards the distinct microstructural developments during cyclic loading at a strain amplitude of $$pm$$ 1.0%. A much more prominent secondary cyclic hardening (SCH) behavior at the final deformation stage was observed in the fine-grained (FG) than in the coarse-grained (CG) CoCrFeMnNi. In-situ neutron-diffraction and microscopic examination, strongly corroborated by molecular dynamic (MD) simulations, indicated that dislocation activities from planar slip to wavy slip-driven subgrain structures within the grains acted as the primary cyclic-deformation behaviors in the FG CoCrFeMnNi. Differently observed in the cyclic behavior of the CG CoCrFeMnNi was due to a transition from the planar dislocation slip to twinning.

論文

Tensile response of as-cast CoCrFeNi and CoCrFeMnNi high-entropy alloys

Lam, T.-N.*; Luo, M.-Y.*; 川崎 卓郎; Harjo, S.; Jain, J.*; Lee, S.-Y.*; Yeh, A.-C.*; Huang, E.-W.*

Crystals (Internet), 12(2), p.157_1 - 157_9, 2022/02

 被引用回数:6 パーセンタイル:86.22(Crystallography)

In this research, we systematically investigated equiatomic CoCrFeNi and CoCrFeMnNi high-entropy alloys (HEAs). Both of these HEA systems are single-phase, face-centered-cubic (FCC) structures. Specifically, we examined the tensile response in as-cast quaternary CoCrFeNi and quinary CoCrFeMnNi HEAs at room temperature. Compared to CoCrFeNi HEA, the elongation of CoCrFeMnNi HEA was 14% lower, but the yield strength and ultimate tensile strength were increased by 17% and 6%, respectively. The direct real-time evolution of structural defects during uniaxial straining was acquired via in situ neutron-diffraction measurements. The dominant microstructures underlying plastic deformation mechanisms at each deformation stage in as-cast CoCrFeNi and CoCrFeMnNi HEAs were revealed using the Convolutional Multiple Whole Profile (CMWP) software for peak-profile fitting. The possible mechanisms are reported.

論文

Microstructural evolution and mechanical properties of non-equiatomic (CoNi)$$_{74.66}$$Cr$$_{17}$$Fe$$_{8}$$C$$_{0.34}$$ high-entropy alloy

Kim, Y. S.*; Chae, H.*; Huang, E.-W.*; Jain, J.*; Harjo, S.; 川崎 卓郎; Hong, S. I.*; Lee, S. Y.*

Materials, 15(4), p.1312_1 - 1312_11, 2022/02

 被引用回数:0 パーセンタイル:0(Chemistry, Physical)

In this study, we manufactured a non-equiatomic (CoNi)$$_{74.66}$$Cr$$_{17}$$Fe$$_{8}$$C$$_{0.34}$$ high-entropy alloy (HEA) consisting of a single-phase face-centered-cubic structure. The non-equiatomic (CoNi)$$_{74.66}$$Cr$$_{17}$$Fe$$_{8}$$C$$_{0.34}$$ HEA revealed a good combination of strength and ductility in mechanical properties compared to the equiatomic CoNiCrFe HEA, due to both stable solid solution and precipitation-strengthened effects. The non-equiatomic stoichiometry resulted in not only a lower electronegativity mismatch, indicating a more stable state of solid solution, but also a higher stacking fault energy (SFE, $$sim$$50 mJ/m$$^{2}$$) due to the higher amount of Ni and the lower amount of Cr. This higher SFE led to a more active motion of dislocations relative to mechanical twinning, resulting in severe lattice distortion near the grain boundaries and dislocation entanglement near the twin boundaries.

論文

Neutron spectroscopy evidence on the dual nature of magnetic excitations in a van der Waals metallic ferromagnet Fe$$_{2.75}$$GeTe$$_{2}$$

Bao, S.*; Wang, W.*; Shangguan, Y.*; Cai, Z.*; Dong, Z.-Y.*; Huang, Z.*; Si, W.*; Ma, Z.*; 梶本 亮一; 池内 和彦*; et al.

Physical Review X, 12(1), p.011022_1 - 011022_15, 2022/02

 被引用回数:11 パーセンタイル:88.9(Physics, Multidisciplinary)

In the local or itinerant extreme, magnetic excitations can be described by the Heisenberg model which treats electron spins as localized moments, or by the itinerant-electron model where the exchange interaction between electrons leads to unequal numbers of electrons with up and down spins. However, the nature of the magnetic excitations has been elusive when both local moments and itinerant electrons are present in the intermediate range. Using inelastic neutron scattering, we provide direct spectroscopic evidence on the coexistence of and interplay between local moments and itinerant electrons in a van der Waals metallic ferromagnet Fe$$_{2.72}$$GeTe$$_{2}$$, which can sustain tunable room-temperature ferromagnetism down to the monolayer limit. We find that there exist ferromagnetic spin-wave excitations dispersing from the zone center at low energies resulting from local moments and a columnlike broad continuum at the zone boundary at high energies up to over 100 meV resulting from itinerant electrons. Unlike the two-dimensional crystal structure, the low-energy mode exhibits a three-dimensional nature, and the high-energy mode also has an out-of-plane dependence. Both modes persist well above the Curie temperature of 160 K. Our neutron spectroscopic data reveal that the low-energy spin waves at 100 K are more coherent than those at 4 K, which is evidence of the weakening of the Kondo screening at high temperatures. These results unambiguously demonstrate the coexistence of local moments and itinerant electrons and the Kondo effect between these two components in Fe$$_{2.72}$$GeTe$$_{2}$$. Such behaviors are generally expected in heavy-fermion systems with heavy $$f$$ electrons but are rarely clearly observed in materials with light $$d$$ electrons. These findings shed light on the understanding of magnetism in transition-metal compounds.

論文

Evidence for strong correlations at finite temperatures in the dimerized magnet Na$$_{2}$$Cu$$_{2}$$TeO$$_{6}$$

Shangguan, Y.*; Bao, S.*; Dong, Z.-Y.*; Cai, Z.*; Wang, W.*; Huang, Z.*; Ma, Z.*; Liao, J.*; Zhao, X.*; 梶本 亮一; et al.

Physical Review B, 104(22), p.224430_1 - 224430_8, 2021/12

 被引用回数:1 パーセンタイル:7.51(Materials Science, Multidisciplinary)

Dimerized magnets forming alternating Heisenberg chains exhibit quantum coherence and entanglement and thus can find potential applications in quantum information and computation. However, magnetic systems typically undergo thermal decoherence at finite temperatures. Here, we show inelastic neutron scattering results on an alternating antiferromagnetic-ferromagnetic chain compound Na$$_{2}$$Cu$$_{2}$$TeO$$_{6}$$ that the excited quasiparticles can counter thermal decoherence and maintain strong correlations at elevated temperatures. At low temperatures, we observe clear dispersive singlet-triplet excitations arising from the dimers formed along the crystalline $$b$$-axis. The excitation gap is of $$sim$$18 meV and the bandwidth is about half of the gap. The band top energy has a weak modulation along the [100] direction, indicative of a small interchain coupling. The gap increases while the bandwidth decreases with increasing temperature, leading to a strong reduction in the available phase space for the triplons. As a result, the Lorentzian-type energy broadening becomes highly asymmetric as the temperature is raised. These results are associated with a strongly correlated state resulting from hard-core constraint and quasiparticle interactions. We consider these results to be not only evidence for strong correlations at finite temperatures in Na$$_{2}$$Cu$$_{2}$$TeO$$_{6}$$, but also for the universality of the strongly correlated state in a broad range of quantum magnetic systems.

論文

Solving the puzzles of the decay of the heaviest known proton-emitting nucleus $$^{185}$$Bi

Doherty, D. T.*; Andreyev, A. N.; Seweryniak, D.*; Woods, P. J.*; Carpenter, M. P.*; Auranen, K.*; Ayangeakaa, A. D.*; Back, B. B.*; Bottoni, S.*; Canete, L.*; et al.

Physical Review Letters, 127(20), p.202501_1 - 202501_6, 2021/11

 被引用回数:8 パーセンタイル:64.62(Physics, Multidisciplinary)

$$^{185}$$Bi is the heaviest known proton emitting isotope. Its decay had been observed, but the assumed ground-state lifetime ($$sim$$$$60~mu$$s) was incorrect, leading to unexplained hindrance. With two new experiments at Argonne National Laboratory, two states were clearly identified. One is the proton-emitting ground-state (spin 1/2$$^+$$, half-life: 2.8$$^{+2.3}_{-1.0}$$ $$mu$$s), the second is a 58(2) $$mu$$s $$gamma$$-decaying isomer. The new data show the inversion of the ground and isomeric states compared to neighboring Bi isotopes. This is the only known example of a ground-state proton decay to a daughter nucleus ($$^{184}$$Pb) with a major shell closure.

論文

Formation of $$alpha$$ clusters in dilute neutron-rich matter

田中 純貴*; Yang, Z.*; Typel, S.*; 足立 智*; Bai, S.*; van Beek, P.*; Beaumel, D.*; 藤川 祐輝*; Han, J.*; Heil, S.*; et al.

Science, 371(6526), p.260 - 264, 2021/01

 被引用回数:50 パーセンタイル:99.36(Multidisciplinary Sciences)

$$alpha$$ノックアウト反応を用いることで、中性子過剰な錫同位体の核表面での$$alpha$$クラスター形成を実験的に確かめた。実験で得られた、質量数とともに単調に減少するノックアウト断面積は理論による予言と非常に良く一致し、$$alpha$$クラスター形成率と中性子スキン厚との関係を示唆している。

論文

Enhancement of fatigue resistance by overload-induced deformation twinning in a CoCrFeMnNi high-entropy alloy

Lam, T.-N.*; Lee, S. Y.*; Tsou, N.-T.*; Chou, H.-S.*; Lai, B.-H.*; Chang, Y.-J.*; Feng, R.*; 川崎 卓郎; Harjo, S.; Liaw, P. K.*; et al.

Acta Materialia, 201, p.412 - 424, 2020/12

 被引用回数:34 パーセンタイル:91.08(Materials Science, Multidisciplinary)

We examined fatigue-crack-growth behaviors of CoCrFeMnNi high-entropy alloys (HEAs) under as-fatigued and tensile-overloaded conditions using neutron-diffraction measurements coupled with diffraction peak-profile analyses. We applied both high-resolution transmission electron microscopy (HRTEM) and neutron-diffraction strain mapping for the complementary microstructure examinations. Immediately after a single tensile overload, the crack-growth-retardation period was obtained by enhancing the fatigue resistance, as compared to the as-fatigued condition. The combined mechanisms of the overload-induced larger plastic deformation, the enlarged compressive residual stresses and plastic-zone size, the crack-tip blunting ahead of the crack tip, and deformation twinning governed the pronounced macroscopic crack-growth-retardation behavior following the tensile overload.

36 件中 1件目~20件目を表示