Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
中沢 雄河*; Bae, S.*; Choi, H.*; Choi, S.*; 飯嶋 徹*; 飯沼 裕美*; 河村 成肇*; 北村 遼; Kim, B.*; Ko, H. S.*; et al.
Nuclear Instruments and Methods in Physics Research A, 937, p.164 - 167, 2019/09
被引用回数:1 パーセンタイル:23.13(Instruments & Instrumentation)再加速された熱ミューオンビームを用いたミューオンの異常磁気モーメント及び電気双極子モーメント精密測定実験用のミューオンリニアックを開発中である。このリニアックのためのUV光駆動の負水素イオン源を開発した。ミューオン加速実験の前にこのイオン源を用いたビームラインの調整を行った。加速ミューオンの分別に必要な偏向電磁石の磁場強度を負水素ビームを用いて確認することができた。このイオン源はミューオンビームラインのコミッショニングに広く用いることができる。
Kim, B.*; Bae, S.*; Choi, H.*; Choi, S.*; 河村 成肇*; 北村 遼*; Ko, H. S.*; 近藤 恭弘; 三部 勉*; 大谷 将士*; et al.
Nuclear Instruments and Methods in Physics Research A, 899, p.22 - 27, 2018/08
被引用回数:5 パーセンタイル:64.98(Instruments & Instrumentation)ミューオン異常磁気能率/電気双極子モーメントの高精度測定のための、横運動量の小さな低運動量ミューオンビーム用のマイクロチャンネルプレートを用いたビームプロファイルモニタを開発した。このプロファイルモニタで、4MeVまでのミューオンを測定できる。このプロファイルモニタの性能評価を、J-PARCのミューオンビームと紫外光源を用いて行った。その結果、10までのミューオンを飽和することなく測定可能であり、位置分解能が0.3mmであることが実証された。また、ミューオンビーム中のバックグランドとなる崩壊陽電子を、MCPの出力の違いから区別可能であることも実証した。
Bae, S.*; Choi, H.*; Choi, S.*; 深尾 祥紀*; 二ツ川 健太*; 長谷川 和男; 飯嶋 徹*; 飯沼 裕美*; 石田 勝彦*; 河村 成肇*; et al.
Physical Review Accelerators and Beams (Internet), 21(5), p.050101_1 - 050101_6, 2018/05
被引用回数:11 パーセンタイル:81.67(Physics, Nuclear)ミューオンがRF加速器によって初めて加速された。正ミューオンと電子の束縛状態である負ミューオニウムをアルミ標的中での電子獲得反応によって生成し、静電加速器により初期加速する。それを高周波四重極加速空洞(RFQ)によって89keVまで加速した。加速された負ミューオニウムは、偏向電磁石による運動量の測定と飛行時間により同定された。このコンパクトなミューオン加速器は、素粒子物理や物性物理などのミューオン加速器の様々な応用への第一歩である。
北村 遼*; 大谷 将士*; 近藤 恭弘; Bae, S.*; Choi, S.*; 深尾 祥紀*; 二ツ川 健太*; 長谷川 和男; 飯沼 裕美*; 石田 勝彦*; et al.
Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.100 - 103, 2017/12
J-PARCにおいて、新しいミューオンg-2実験が計画されている。この実験では、超低温ミューオンを生成し、線形加速器によって再加速する。このミューオンリニアックの初段の加速構造として、RFQが用いられる。初期の加速試験において、J-PARCリニアックの予備機として製作されたRFQ(RFQ II)を用いる予定である。この論文では、初期の加速試験に用いる、アルミニウムのデグレーダを用いた低速ミューオン源の開発状況、また、このミューオン源を用いたミューオン加速のシミュレーション研究について述べる。
北村 遼*; 大谷 将士*; 近藤 恭弘; Bae, S.*; 深尾 祥紀*; 長谷川 和男; 飯沼 裕美*; 石田 勝彦*; 河村 成肇*; Kim, B.*; et al.
no journal, ,
ミューオンg-2/EDMの精密測定に向けてJ-PARC E34実験ではミューオンRF実証試験に向けた準備を進めている。RFQによるミューオン加速試験のミューオン源として、金属薄膜により減速した正ミューオン及び負ミューオニウムビームの強度測定を実施した。さらにRFQ入射ビームのエミッタンス評価に向けて減速正ミューオンビームのプロファイル測定も実施した。本講演ではビーム試験の解析結果について報告する。
大谷 将士*; Bae, S.*; 深尾 祥紀*; 長谷川 和男; 飯沼 裕美*; 石田 勝彦*; 河村 成肇*; Kim, B.*; 北村 遼*; 近藤 恭弘; et al.
no journal, ,
J-PARCミューオンg-2実験(E34)では世界初のミューオン加速によって低エミッタンスビームを実現し、先行実験で主要な系統誤差であったビーム由来の系統誤差を排除して世界最高精度測定(0.14ppm)を目指している。我々はこれまで、J-PARC MLFにおいて世界初のミューオン加速に向けた基礎データを取得してきた。この結果に基づいてRFQによる加速試験を準備し、2017年11月に本試験を行う予定である。本講演では、試験の準備状況について報告する。
大谷 将士*; 近藤 恭弘; 北村 遼*; 中沢 雄河*; 須江 祐貴*; Bae, S.*; Choi, S.*; 長谷川 和男; 飯沼 裕美*; 河村 成肇*; et al.
no journal, ,
J-PARCミューオンg-2実験(E34)では世界初のミューオン加速によって低エミッタンスビームを実現し、先行実験で主要な系統誤差であったビーム由来の系統誤差を排除して世界最高精度測定を目指している。我々は今回、J-PARC MLFにおいて世界初のミューオン加速を実現した。本講演では、この加速試験成功を踏まえ、ミューオンリニアック全体と今後の展望について報告する。
北村 遼*; 大谷 将士*; 近藤 恭弘; Bae, S.*; Choi, S.*; 深尾 祥紀*; 二ツ川 健太*; 長谷川 和男; 飯沼 裕美*; 石田 勝彦*; et al.
no journal, ,
J-PARC E34実験ではミューオンg-2/EDMの精密測定に向けて、ミューオン線形加速器の開発を進めている。初段加速器のRFQを用いたミューオンRF加速実証試験を2017年10月にJ-PARC MLFで実施した。運動エネルギー3MeVのミューオンビームは、金属薄膜標的に照射されることで負ミューオニウムイオン(Mu)となって冷却された後、静電加速収束器により5.6keVまで静電加速され、さらにRFQにより88.6keVまでRF加速される。加速Mu
ビームは偏向電磁石による運動量選別を経てMCPで検出され、TOF測定により加速Mu
の識別を行った。本講演では最新の実験結果について報告する。