検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 126 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

発表言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Enhanced strength and ductility in an additively manufactured Al10SiMg alloy at cryogenic temperatures

Naeem, M.*; Rehman, A. U.*; Romero Resendiz, L.*; Salamci, E.*; Aydin, H.*; Ansari, P.*; Harjo, S.; Gong, W.; Wang, X.-L.*; 他3名*

Communications Materials (Internet), 6, p.65_1 - 65_13, 2025/04

The need for lightweight materials with mechanical integrity at ultralow temperatures drives the development of advanced alloys for cryogenic use. Additive manufacturing via laser powder bed fusion (LPBF) offers a scalable way to create alloys with tailored properties. Here, we show that LPBF-processed Al10SiMg exhibits a high ultimate tensile strength (395 MPa) and uniform elongation (25%) at 15 K. These enhancements stem from grain refinement, increased geometrically necessary dislocations, and stress partitioning between the Al matrix and the stiffer Si phase, aiding strain accommodation. ${it In-situ}$ neutron diffraction reveals that the Si phase, with its higher yield strength, bears most of the load, while the Al matrix undergoes continuous strain hardening, extending deformation capacity. These results highlight Al10SiMg's promise for cryogenic applications such as hydrogen storage, aerospace, and quantum computing hardware.

論文

Unusual low-temperature ductility increase mediated by dislocations alone

Naeem, M.*; Ma, Y.*; Tian, J.*; Kong, H.*; Romero-Resendiz, L.*; Fan, Z.*; Jiang, F.*; Gong, W.; Harjo, S.; Wu, Z.*; et al.

Materials Science & Engineering A, 924, p.147819_1 - 147819_10, 2025/02

 被引用回数:1 パーセンタイル:0.00(Nanoscience & Nanotechnology)

Face-centered cubic (fcc) medium-/high-entropy alloys (M/HEAs) typically enhance strength and ductility at cryogenic temperatures via stacking faults, twinning, or martensitic transformation. However, in-situ neutron diffraction on VCoNi MEA at 15 K reveals that strain hardening is driven solely by rapid dislocation accumulation, without these mechanisms. This results in increased yield strength, strain hardening, and fracture strain. The behavior, explained by the Orowan equation, challenges conventional views on cryogenic strengthening in fcc M/HEAs and highlights the role of dislocation-mediated plasticity at low temperatures.

論文

Strong low-energy rattling modes enabled liquid-like ultralow thermal conductivity in a well-ordered solid

Liu, P.-F.*; Li, X.*; Li, J.*; Zhu, J.*; Tong, Z.*; 古府 麻衣子*; 楡井 真実; Xu, J.*; Yin, W.*; Wang, F.*; et al.

National Science Review, 11(12), p.nwae216_1 - nwae216_10, 2024/12

 被引用回数:13 パーセンタイル:94.32(Multidisciplinary Sciences)

Crystalline solids exhibiting inherently low lattice thermal conductivity ($$kappa_{rm L}$$) are of great importance in applications such as thermoelectrics and thermal barrier coatings. However, $$kappa_{rm L}$$ cannot be arbitrarily low and is limited by the minimum thermal conductivity related to phonon dispersions. In this work, we report the liquid-like thermal transport in a well-ordered crystalline CsAg$$_5$$Te$$_3$$, which exhibits an extremely low $$kappa_{rm L}$$ value of $$sim$$ 0.18 Wm$$^{-1}$$K$$^{-1}$$. On the basis of first-principles calculations and inelastic neutron scattering measurements, we find that there are lots of low-lying optical phonon modes at $$sim$$ 3.1 meV hosting the avoided-crossing behavior with acoustic phonons. These strongly localized modes are accompanied by weakly bound rattling Ag atoms with thermally induced large amplitudes of vibrations. Using the two-channel model, we demonstrate that coupling of the particle-like phonon modes and the heat-carrying wave-like phonons is essential for understanding the low $$kappa_{rm L}$$, which is heavily deviated from the $$1/T$$ temperature dependence of the standard Peierls theory. In addition, our analysis indicates that the soft structural framework with liquid-like motions of the fluctuating Ag atoms is the underlying cause that leads to the suppression of the heat conduction in CsAg$$_5$$Te$$_3$$. These factors synergistically account for the ultralow $$kappa_{rm L}$$ value. Our results demonstrate that the liquid-like heat transfer could indeed exist in a well-ordered crystal.

論文

Antiferromagnetism and phase stability of CrMnFeCoNi high-entropy alloy

Zhu, L.*; He, H.*; Naeem, M.*; Sun, X.*; Qi, J.*; Liu, P.*; Harjo, S.; 中島 健次; Li, B.*; Wang, X.-L.*

Physical Review Letters, 133(12), p.126701_1 - 126701_6, 2024/09

 被引用回数:3 パーセンタイル:43.84(Physics, Multidisciplinary)

It has long been suspected that magnetism could play a vital role in the phase stability of multi- component high-entropy alloys. However, the nature of the magnetic order, if any, has remained elusive. Here, by using elastic and inelastic neutron scattering, we demonstrate evidence of antiferromagnetic order below $$sim$$80 K and strong spin fluctuations persisting to room temperature in a single-phase face-centered cubic (fcc) CrMnFeCoNi high-entropy alloy. Despite the chemical complexity, the magnetic structure in CrMnFeCoNi can be described as $$gamma$$-Mn-like, with the magnetic moments confined in alternating (001) planes and pointing toward the $$langle$$111$$rangle$$ direction. Combined with first-principles calculation results, it is shown that the antiferromagnetic order and spin fluctuations help stabilized the fcc phase in CrMnFeCoNi high-entropy alloy.

論文

Application of neutron characterization techniques to metallic structural materials

Wang, Y.*; Gong, W.; Su, Y. H.; Li, B.*

Acta Metallurgica Sinica, 60(8), p.1001 - 1016, 2024/08

 被引用回数:1 パーセンタイル:36.18(Metallurgy & Metallurgical Engineering)

The correlation between the atomic structure, microstructure, and macroscopic properties of structural materials remains a core issue in materials research. In recent years, substantial progress has been achieved in constructing accelerator-based neutron sources and related experimental techniques, offering a robust platform for an in-depth understanding of the aforementioned correlation under real-time and in situ conditions. This article reviews the latest advancements in the application of major neutron characterization techniques, including neutron diffraction, Bragg-edge imaging, small-angle neutron scattering, pair distribution function analysis, and quasi-elastic/inelastic neutron scattering, in structural materials. Furthermore, it particularly highlights the origins and evolution of internal stresses during the phase transformations of steels, deformation mechanisms in light metals such as magnesium alloys, and microstructure and residual stress analyses using Bragg-edge imaging. Finally, a brief outlook on future development trends is provided.

論文

Progress of material characterization techniques based on neutron Bragg-edge transmission imaging

Wang, Y. W.*; 徐 平光; Su, Y. H.; Ma, Y. L.*; Wang, H. H.*

Physics Examination and Testing, 42(4), p.32 - 41, 2024/08

With the rapid technological development of large spallation neutron source facilities, the neutron beam flux obtained has been greatly improved and neutron imaging techniques have been further developed. Due to the limitation of neutron beam flux, conventional neutron imaging techniques require neutron beams with a wide wavelength range to obtain relatively high neutron beam flux conditions. Recently, spallation neutron sources using large proton accelerators have made it possible to obtain high-flux pulsed neutron beams. Energy (wavelength) resolved neutron imaging technique based on the Bragg edge effect (neutron Bragg edge transmission imaging technique) is expected to have a wide range of applications because of its high energy resolution, high spatial resolution, and ability to detect crystallographic information. The basic principle of this technique is briefly introduced. Several applications in the evaluation of residual strain, phase composition, dislocation density, and oriented structure are also reviewed to play an active role in promoting the wider applications of related technique.

論文

Dual nanoprecipitation and nanoscale chemical heterogeneity in a secondary hardening steel for ultrahigh strength and large uniform elongation

Wang, S.*; Wang, J.*; Zhang, S.*; Wei, D.*; Chen, Y.*; Rong, X.*; Gong, W.; Harjo, S.; Liu, X.*; Jiao, Z.*; et al.

Journal of Materials Science & Technology, 185, p.245 - 258, 2024/06

 被引用回数:17 パーセンタイル:98.00(Materials Science, Multidisciplinary)

Nanoprecipitates and nanoscale retained austenite (RA) with suitable stability play crucial roles in determining the yield strength (YS) and ductility of ultrahigh strength steels (UHSSs). However, owing to the kinetics incompatibility between nanoprecipitation and austenite reversion, it is highly challenging to simultaneously introduce high-density nanoprecipitates and optimized RA in UHSSs. In this work, through the combination of austenite reversion treatment (ART) and subsequent flash austenitizing (FA), nanoscale chemical heterogeneity was successfully introduced into a low-cost UHSS prior to the aging process. This chemical heterogeneity involved the enrichment of Mn and Ni in the austenite phase. The resulting UHSS exhibited dual-nanoprecipitation of Ni(Al,Mn) and (Mo,Cr)$$_{2}$$ C and nanoscale austenite stabilized via Mn and Ni enrichment. The hard martensitic matrix strengthened by high-density dual-nanoprecipitates constrains the plastic deformation of soft RA with a relatively low fraction, and the presence of relatively stable nanoscale RA with adequate Mn and Ni enrichment leads to a marginal loss in YS but keeps a persistent transformation-induced plasticity (TRIP) effect. As a result, the newly-developed UHSS exhibits an ultrahigh YS of 1.7 GPa, an ultimate tensile strength (UTS) of 1.8 GPa, a large uniform elongation (UE) of 8.5 percent, and a total elongation (TE) of 13 percent. The strategy of presetting chemical heterogeneity to introduce proper metastable phases before aging can be extended to other UHSSs and precipitation-hardened alloys.

論文

Microscopic insights of the extraordinary work-hardening due to phase transformation

Ma, Y.*; Naeem, M.*; Zhu, L.*; He, H.*; Sun, X.*; Yang, Z.*; He, F.*; Harjo, S.; 川崎 卓郎; Wang, X.-L.*

Acta Materialia, 270, p.119822_1 - 119822_13, 2024/05

 被引用回数:10 パーセンタイル:94.16(Materials Science, Multidisciplinary)

We report an in situ neutron diffraction study of 316 L that reveals an extraordinary work-hardening rate (WHR) of $$sim$$7 GPa at 15 K. Detailed analyses show that the major contribution to the excellent strength and ductility comes from the transformation-induced plasticity (TRIP) effect, introduced by the austenite-to-martensite ($$gamma$$-to-$$alpha$$') phase transition. A dramatic increase in the WHR is observed along with the transformation; the WHR declined when the austenite phase is exhausted. During plastic deformation, the volume-fraction weighted phase stress and stress contribution from the $$alpha$$'-martensite increase significantly. The neutron diffraction data further suggest that the $$gamma$$-to-$$alpha$$' phase transformation was mediated by the $$varepsilon$$-martensite, as evidenced by the concurrent decline of the $$varepsilon$$ phase with the $$gamma$$ phase.

論文

Archie's cementation factors for natural rocks; Measurements and insights from diagenetic perspectives

Yuan, X.*; Hu, Q. H.*; Fang, X.*; Wang, Q. M.*; Ma, Y.*; 舘 幸男

Sedimentary Geology, 465, p.106633_1 - 106633_14, 2024/05

 被引用回数:0 パーセンタイル:0.00(Geology)

Archie's cementation factor, m, is a critical parameter for petrophysical studies, and the value is influenced by several factors such as the shape, type, and size of grains, degrees of diagenesis, and associated pore structure. Using integrated experimental and theoretical approaches, the goal of this study is to obtain the cementation factor of rocks (both reservoir rock and caprock) and assess the impact of diagenesis processes on the values of the cementation factor. Thirteen samples of geologically diverse rocks (six mudstones, four fossiliferous limestones, two marbles, and one sandstone) were selected to achieve these research objectives. Two approaches, the diffusion of gas tracers and the Bosanquet formula calculation using pore-throat sizes from mercury intrusion porosimetry analyses, were used to derive the cementation factors of these rock samples. These rocks were categorized into two groups based on the correlation between average pore-throat diameter and diffusivity, and an exponential-law relationship between the cementation factor and porosity was determined for these sample groups. In addition, thin-section petrography and field emission-scanning electron microscopy observations were utilized to investigate diagenetic processes, with four diagenetic patterns being established: (1) strong compaction, strong cementation, and weak dissolution-diagenesis pattern; (2) weak compaction, medium cementation, and weak dissolution-diagenesis pattern; (3) weak compaction, medium cementation, and strong dissolution-diagenesis pattern; and (4) fracture-matrix pattern. The results indicated that diagenetic processes and microfractures contribute to the variability in the cementation factors in these rock samples.

論文

Crystal-liquid duality driven ultralow two-channel thermal conductivity in $$alpha$$-MgAgSb

Li, J.*; Li, X.*; Zhang, Y.*; Zhu, J.*; Zhao, E.*; 古府 麻衣子; 中島 健次; Avdeev, M.*; Liu, P.-F.*; Sui, J.*; et al.

Applied Physics Reviews (Internet), 11(1), p.011406_1 - 011406_8, 2024/03

 被引用回数:11 パーセンタイル:89.71(Physics, Applied)

The desire for intrinsically low lattice thermal conductivity ($$kappa_L$$) in thermoelectrics motivates numerous efforts on understanding the microscopic mechanisms of heat transport in solids. Here, based on theoretical calculations, we demonstrate that $$alpha$$-MgAgSb hosts low-energy localized phonon bands and avoided crossing of the rattler modes, which coincides with the inelastic neutron scattering result. Using the two-channel lattice dynamical approach, we find, besides the conventional contribution ($$sim$$70% at 300 K) from particlelike phonons propagating, the coherence contribution dominated by the wavelike tunneling of phonons accounts for $$sim$$30% of total $$kappa_L$$ at 300 K. By considering dual contributions, our calculated room-temperature $$kappa_L$$ of 0.64 Wm$$^{-1}$$K$$^{-1}$$ well agrees with the experimental value of 0.63 Wm$$^{-1}$$K$$^{-1}$$. More importantly, our computations give a nonstandard $$kappa_L propto T^{-0.61}$$ dependence, perfectly explaining the abnormal temperature-trend of $$sim T^{-0.57}$$ in experiment for $$alpha$$-MgAgSb. By molecular dynamics simulation, we reveal that the structure simultaneously has soft crystalline sublattices with the metavalent bonding and fluctuating liquid-like sublattices with thermally induced large amplitude vibrations. These diverse forms of chemical bonding arouse mixed part-crystal part-liquid state, scatter strongly heat-carrying phonons, and finally produce extremely low $$kappa_L$$. The fundamental research from this study will accelerate the design of ultralow-$$kappa_L$$ materials for energy-conversion applications.

論文

ALTEMIS: Using integrated hydrology and reactive transport modeling to support resilience at the Savannah River Site

Xu, Z.*; Litzinger, A.*; 佐久間 一幸; Arora, B.*; Hazenberg, P.*; Wang, L.*; Gonzalez Raymat, H.*; Fabricatore, E.*; Wainwright, Haruko*; Eddy-Dilek, C.*

Proceedings of Waste Management Symposia 2024 (WM2024) (Internet), 14 Pages, 2024/03

We leverage the Advanced Terrestrial Simulator (ATS), a comprehensive model encompassing overland flow, groundwater processes, canopy and ground evapotranspiration effects. ATS is integrated with reactive transport models, including PFLOTRAN and CrunchFlow, to capture the intricate dynamics of key nuclear-related geochemical species. The Advanced Long-term Environmental Monitoring Systems (ALTEMIS) project extends its efforts across multiple scales: 1) Watershed Scale ATS Model: At the Savannah River Site, we employ a watershed-scale ATS model to quantify the water budget and estimate evapotranspiration fluxes.; 2) Integrated Hydrology Model for Floodplains: Our integrated hydrology model zooms in on the floodplain of Fourmiles Creek, enabling quantification of upwelling groundwater fluxes into wetlands and surface ponds. It also used to assess contaminant migration into Fourmiles Creek; 3) Fully Integrated Reactive Transport Model: Focused on the F-Area seepage basin, one of the largest nuclear waste processing facilities, we develop both 2D transect and 3D basin models. These models estimate the behavior of radioactive elements such as uranium and tritium, as well as non-reactive geochemical species.; 4) Sr-90 Sorption Model: Informed by extensive Sr-90 sorption experiments on minerals and core samples, we parameterize both electrostatic and non-electrostatic sorption models for Sr-90. These models are integrated into multiple reactive transport frameworks, significantly enhancing our ability to accurately predict Sr-90 migration under varying pH conditions.

論文

Microscopic origin of the spin-reorientation transition in the kagome topological magnet TbMn$$_{6}$$Sn$$_{6}$$

Huang, Z.*; Wang, W.*; Ye, H.*; Bao, S.*; Shangguan, Y.*; Liao, J.*; Cao, S.*; 梶本 亮一; 池内 和彦*; Deng, G.*; et al.

Physical Review B, 109(1), p.014434_1 - 014434_9, 2024/01

 被引用回数:3 パーセンタイル:57.35(Materials Science, Multidisciplinary)

TbMn$$_{6}$$Sn$$_{6}$$ is a correlated topological magnet with a Mn-based kagome lattice, in which a Chern gap opens at the Dirac point at low temperatures. The magnetic moment direction of the ferrimagnetic order changes from in the kagome plane to the out-of-plane upon cooling, which is essential for generating the Chern gap, but the underlying mechanism for the spin reorientation remains elusive. Here, we investigate the spin-reorientation transition in TbMn$$_{6}$$Sn$$_{6}$$ using neutron scattering. We provide direct evidence for the spin-reorientation transition and unveil the coexistence of two Tb modes at 200 K. To account for these results, we put forward a model based on SU(N) spin-wave theory, in which there is a temperature evolution of the ground state Tb $$4f$$ orbitals, driven by the crystalline electric field, single-ion anisotropy, and exchange interactions between Tb and Mn ions. Our findings shed light on the complex magnetism of TbMn$$_{6}$$Sn$$_{6}$$, despite its relatively simple ground state magnetic structure, and provide insights into the mechanisms for tuning magnetic topological materials.

論文

Cryogenic impact fracture behavior of a high-Mn austenitic steel using electron backscatter diffraction and neutron Bragg-edge transmission imaging

Wang, Y. W.*; Wang, H. H.*; Su, Y. H.; 徐 平光; 篠原 武尚

Materials Science & Engineering A, 887, p.145768_1 - 145768_13, 2023/11

 被引用回数:7 パーセンタイル:65.32(Nanoscience & Nanotechnology)

A unique impact fracture behavior is found in a high-Mn austenitic steel (24Mn-4Cr-0.4C-0.3Cu) in this work. The steel exhibits concurrent twinning-induced plasticity (TWIP) effect and the transformation-induced plasticity (TRIP) effect. By analyzing the load-deflection curves recorded during Charpy impact testing, the resistance to crack initiation and propagation is quantified from the absorbed energy. The high-Mn steel demonstrates good resistance to crack initiation at 273 K and 77 K. However, as the temperature decreases from 273 K to 77 K, there is an accelerated transition from stable crack growth to unstable crack growth during impact, resulting in the deterioration of resistance to crack propagation. The plastic deformation of the impact-tested samples, especially in the region close to the crack-path profile was quantitatively analyzed using neutron Bragg-edge transmission (BET) imaging. The deformation zones, divided by using the width of the 200 Bragg edge, exhibit good agreement with the impact absorbed energy characteristics obtained from dynamic load-deflection curves. Moreover, the unstable growth transition point was roughly determined on the impact-tested sample. Then, the electron backscatter diffraction (EBSD) technique is employed to examine the deformation microstructure along the crack-path in the impact-tested samples. The results revealed the dual roles of TRIP effect in impact toughness of the high-Mn steel. On one hand, the TRIP effect plays a positive role in improving resistance to crack initiation and propagation. On the other hand, the excessive accumulation of brittle $$varepsilon$$/$$alpha$$'-martensite caused by the enhanced TRIP effect at 77 K leads to quasi-cleavage fracture, thereby playing a negative role. Finally, we discussed the prominent toughening mechanisms associated with the TWIP and TRIP effects, which greatly impact the impact fracture behavior.

論文

Development of scalable deconvolution methods for determining secondary target neutron yields from dual-thick-target cosmic-ray ion accelerator experiments

Ratliff, H.; McGirl, N. A.*; Beach, M. R.*; Castellanos, L. A.*; Clowdsley, M. S.*; Heilbronn, L. H.*; LaTessa, C.*; Norbury, J. W.*; Rusek, A.*; Sivertz, M.*; et al.

Nuclear Instruments and Methods in Physics Research B, 544, p.165121_1 - 165121_15, 2023/11

 被引用回数:0 パーセンタイル:0.00(Instruments & Instrumentation)

Experiments emulating the deep-space radiation environment within an enclosed spacecraft were conducted at the NASA Space Radiation Laboratory; this was achieved by bombarding various combinations of two consecutive thick targets with Galactic Cosmic Ray-like particle beams. While all secondary particles generated in the first of these two targets could be characterized using time-of-flight techniques, characterization of the neutrons produced in the second target, emulating the "back wall" of a spacecraft, required the development and implementation of deconvolution techniques. This work covers this methodology, its validation, and the systematic results present within this benchmark dataset of neutron yields from the secondary target.

論文

A One-third magnetization plateau phase as evidence for the Kitaev interaction in a honeycomb-lattice antiferromagnet

Shangguan, Y.*; Bao, S.*; Dong, Z.-Y.*; Xi, N.*; Gao, Y.-P.*; Ma, Z.*; Wang, W.*; Qi, Z.*; Zhang, S.*; Huang, Z.*; et al.

Nature Physics, 19(12), p.1883 - 1889, 2023/09

 被引用回数:19 パーセンタイル:93.50(Physics, Multidisciplinary)

The magnetization of a quantum magnet can be pinned at a fraction of its saturated value by collective effects. One example of such a plateau phase is found in spin-1/2 triangular-lattice antiferromagnets. They feature strong geometrical frustration and the plateau phase therein is often interpreted as arising from an order-by-disorder mechanism driven by quantum fluctuations. Here we observe a one-third magnetization plateau under an applied magnetic field in the spin-1 antiferromagnet Na$$_{3}$$Ni$$_{2}$$BiO$$_{6}$$ with a honeycomb lattice, which, with conventional magnetic interactions, would not be geometrically frustrated. Based on our elastic neutron scattering measurements, we propose the spin structure of the plateau phase to be an unusual partial spin-flop ferrimagnetic order. Our theoretical calculations indicate that bond-anisotropic Kitaev interactions are the source of frustration that produces the plateau. These results suggest that Kitaev interactions provide a different route to frustration and phases driven by quantum fluctuations in high-spin magnets.

論文

Double-differential primary target neutron yields from dual-thick-target proton and heavy ion accelerator experiments

Ratliff, H.; McGirl, N. A.*; Beach, M. R.*; Castellanos, L. A.*; Clowdsley, M. S.*; Heilbronn, L. H.*; LaTessa, C.*; Norbury, J. W.*; Rusek, A.*; Sivertz, M.*; et al.

Nuclear Instruments and Methods in Physics Research B, 542, p.87 - 94, 2023/09

 被引用回数:1 パーセンタイル:25.07(Instruments & Instrumentation)

Experiments at the NASA Space Radiation Laboratory were performed to develop a benchmark dataset relevant to space radiation shielding scenarios by bombarding aluminum and polyethylene targets with galactic cosmic ray-like ion beams. Unique to this experiment, a dual-target configuration was used to emulate an enclosed environment in space in which the radiation environment must be characterized. Neutrons produced by interactions in both thick targets were detected and characterized; this paper discusses the neutrons produced in the most upstream of the two thick targets, detailing the role of source ion and target configuration on neutron yield.

論文

A Colossal barocaloric effect induced by the creation of a high-pressure phase

Jiang, X.*; 服部 高典; Xu, X.*; Li, M.*; Yu, C.*; Yu, D.*; Mole, R.*; 矢野 真一郎*; Chen, J.*; He, L.*; et al.

Materials Horizons, 10(3), p.977 - 982, 2023/03

 被引用回数:26 パーセンタイル:93.14(Chemistry, Multidisciplinary)

現在の蒸気圧縮式冷凍機に代わる環境に優しい冷凍機として、バロカロリック効果に基づく固体冷凍機が世界的に注目されている。一般に、バロカロリック効果が発現する相はいずれも常圧でも存在する。ここでは、それらの物質と違って、KPF$$_{6}$$が高圧の菱面体晶相を生成することにより、巨大なバロカロリック効果を示すことを実証した。相図は、圧力依存の熱量測定、ラマン散乱測定、中性子回折測定に基づいて構築されたものである。本研究は、巨大バロカロリー効果に、高圧相の生成という新たな手法をもたらすと期待される。

論文

Hybridized propagation of spin waves and surface acoustic waves in a multiferroic-ferromagnetic heterostructure

Chen, J.*; 山本 慧; Zhang, J.*; Ma, J.*; Wang, H.*; Sun, Y.*; Chen, M.*; Liu, S.*; Gao, P.*; Yu, D.*; et al.

Physical Review Applied (Internet), 19(2), p.024046_1 - 024046_9, 2023/02

 被引用回数:6 パーセンタイル:62.75(Physics, Applied)

Coherent coupling in magnon based hybrid system has many potential applications in quantum information processing. Magnons can propagate in magnetically ordered materials without any motion of electrons, offering a unique method to build low-power-consumption devices and information channels free of heat dissipation. In this article, we demonstrate the coherent propagation of hybridized modes between spin waves and Love surface acoustic waves in a multiferroic BiFeO$$_{3}$$ and ferromagnetic La$$_{0.67}$$Sr$$_{0.33}$$MnO$$_{3}$$ based heterostructure. The magneto-elastic coupling enables a giant enhancement of strength of the hybridized mode by a factor of 26 compared to that of the pure spin waves. A short wavelength down to 250 nm is demonstrated for the hybridized mode, which is desirable for nanoscale acousto-magnonic applications. Our combined experimental and theoretical analyses represent an important step towards the coherent control in hybrid magnonics, which may inspire the study of magnon-phonon hybrid systems for coherent information processing and manipulation.

論文

Soft, environmentally degradable microfluidic devices for measurement of sweat rate and total sweat loss and for colorimetric analysis of sweat biomarkers

Liu, S.*; Yang, D. S.*; Wang, S.*; Luan, H.*; 関根 由莉奈; Model, J. B.*; Aranyosi, A. J.*; Ghaffari, R.*; Rogers, J. A.*

EcoMat (Internet), 5(1), p.e12270_1 - e12270_18, 2023/01

 被引用回数:40 パーセンタイル:92.61(Chemistry, Physical)

発汗量やバイオマーカーの非侵襲的でin situモニタリング技術は、人間の生理学的状態,健康、およびパフォーマンスに関するリアルタイムの洞察を取得するために重要である。最近、様々なウェアラブル型のマイクロ流体システムが開発されているが、ほとんどは使い捨てとして設計されおり、廃棄物問題への懸念がある。本研究では、発汗量の測定、バイオマーカーの比色分析など、あらゆる機能を備えた生分解性マイクロ流体システムを通じて、廃棄物問題を解決する材料と成形技術を確立した。本技術で利用する材料は、自然の土壌環境または産業用堆肥施設での微生物の酵素作用によって完全に分解した。構成材料、製造手順、組み立てプロセス、および完成したデバイスの詳細な特性評価により、従来のデバイスに匹敵する、またはそれよりも優れた性能パラメータが明らかになった。実際の利用試験により、これらのデバイスが身体活動および熱曝露中の発汗速度、発汗量、pH、および塩化物濃度の正確な測定値を取得可能であることが明らかとなった。

論文

Ten years of warming increased plant-derived carbon accumulation in an East Asian monsoon forest

Zhang, J.*; Kuang, L.*; Mou, Z.*; 近藤 俊明*; 小嵐 淳; 安藤 麻里子; Li, Y.*; Tang, X.*; Wang, Y.-P.*; Pe$~n$uelas, J.*; et al.

Plant and Soil, 481(1-2), p.349 - 365, 2022/12

 被引用回数:12 パーセンタイル:71.66(Agronomy)

Soil warming effects on soil organic carbon (SOC) decomposition and stabilization are highly variable, and the underlying mechanisms are poorly understood. In this study, concentration, stability (dissolved, particle and mineral-associated SOC), and source (plant-derived and microbial-derived) of SOC, soil microbial community composition, and enzyme activities were studied in a 10-year soil warming field experiment in an East Asian monsoon forest. The results showed that 10-year soil warming significantly enhanced SOC in the top 0-10 cm soil. The increased SOC induced by warming was mainly derived from plants with lignin markers, accompanied by a decrease in microbial-derived SOC. This highlights an urgent need for a better understanding of how the contrasting effects of plant- and microbial-derived C mediate the response of the SOC pool to warming across different biomes.

126 件中 1件目~20件目を表示