検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 114 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

発表言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Ordered graphane nanoribbons synthesized via high-pressure diels-alder polymerization of 2,2'-bipyrazine

Li, F.*; Tang, X.*; Fei, Y.*; Zhang, J.*; Liu, J.*; Lang, P.*; Che, G.*; Zhao, Z.*; Zheng, Y.*; Fang, Y.*; et al.

Journal of the American Chemical Society, 147(17), p.14054 - 14059, 2025/04

 被引用回数:0 パーセンタイル:0.00(Chemistry, Multidisciplinary)

2,2'-ビピラジン(BPZ)の圧力誘起重合により結晶性グラファンナノリボン(GANR)を合成した。中性子回折データのリートベルト精密化,核磁気共鳴スペクトル,赤外スペクトル,理論計算を行った結果、BPZは$$pi$$ $$cdots$$ $$pi$$積層した芳香環の間でディールス・アルダー重合し、並外れた長距離秩序を持つ伸びたボート型GANR構造を形成することがわかった。未反応の-C=N-基がボートの両端を橋渡ししており、さらなる機能化の余地がある。このGANRのバンドギャップは2.25eVであり、光電応答は良好である(I$$_{on}$$/I$$_{off}$$ =18.8)。われわれの研究は、高圧トポケミカル重合法が、特定の構造と望んだ特性を持つグラファンの精密な合成に有望な方法であることを強調している。

論文

Spin pumping effect in non-Fermi liquid metals

Zhang, X.-T.*; Xing, Y.-H.*; Yao, X.-P.*; 大湊 友也*; Zhang, L.*; 松尾 衛

Communications Physics (Internet), 8, p.103_1 - 103_8, 2025/03

 被引用回数:0 パーセンタイル:0.00(Physics, Multidisciplinary)

Spin pumping effect is a sensitive and well-established experimental method in two-dimensional (2D) magnetic materials. We propose that spin pumping effect can be a valuable probe for non-Fermi liquid (NFL) behaviors at the 2D interface of magnetic heterostructures. We show that the modulations of ferromagnetic resonance exhibit power-law scalings in frequency and temperature for NFL metals induced near a quantum critical point (QCP). At the Ising nematic QCP, we demonstrate that the enhanced Gilbert damping coefficient $$delta alpha$$ acquires negative power-law exponents in distinct frequency regimes. The exponents convey universal parameters inherited from the QCP and reflect the non- quasiparticle nature of the spin carriers in the NFL metal. At finite temperature, we show that the Gilbert damping mechanism is restored in the quantum critical regime and $$delta alpha$$ measures the temperature dependence of the correlation length.

論文

The Influence of structural dynamics in two-dimensional hybrid organic-inorganic perovskites on their photoluminescence efficiency; Neutron scattering analysis

Rajeev, H. S.*; Hu, X.*; Chen, W.-L.*; Zhang, D.*; Chen, T.*; 古府 麻衣子*; 梶本 亮一; 中村 充孝; Chen, A. Z.*; Johnson, G. C.*; et al.

Journal of the Physical Society of Japan, 94(3), p.034602_1 - 034602_14, 2025/03

 被引用回数:0 パーセンタイル:0.00(Physics, Multidisciplinary)

Two-dimensional hybrid organic-inorganic perovskites (HOIPs) have emerged as promising materials for light-emitting diode applications. In this study, by using time-of-flight neutron spectroscopy we identified and quantitatively separated the lattice vibrational and molecular rotational dynamics of two perovskites, butylammonium lead iodide (BA)$$_{2}$$PbI$$_{4}$$ and phenethyl-ammonium lead iodide (PEA)$$_{2}$$PbI$$_{4}$$. By examining the corresponding temperature dependence, we found that the lattice vibrations, as evidenced by neutron spectra, are consistent with the lattice dynamics obtained from Raman scattering. We revealed that the rotational dynamics of organic molecules in these materials tend to suppress their photoluminescence quantum yield (PLQY) while the vibrational dynamics did not show predominant correlations with the same. Additionally, we observed photoluminescence emission peak splitting for both systems, which becomes prominent above certain critical temperatures where the suppression of PLQY begins. This study suggests that the rotational motions of polarized molecules may lead to a reduction in exciton binding energy or the breaking of degeneracy in exciton binding energy levels, enhancing non-radiative recombination rates, and consequently reducing photoluminescence yield. These findings offer a deeper understanding of fundamental interactions in 2D HOIPs and could guide the design of more efficient light-emitting materials for advanced technological applications.

論文

High-pressure polymerization of phenol toward degree-4 carbon nanothread

Yang, X.*; Che, G.*; Wang, Y.*; Zhang, P.*; Tang, X.*; Lang, P.*; Gao, D.*; Wang, X.*; Wang, Y.*; 服部 高典; et al.

Nano Letters, 25(3), p.1028 - 1035, 2025/01

 被引用回数:1 パーセンタイル:0.00(Chemistry, Multidisciplinary)

飽和sp$$^3$$-カーボンナノスレッド(CNTh)は、その高いヤング率と熱伝導率が予測され、大きな関心を集めている。中心環へのヘテロ原子の導入がCNThの形成に影響を与え、化学的に均質な生成物が得られることが示されているが、ペンダント基が重合プロセスに与える影響については、まだ未解明である。本研究では、フェノールの圧力誘起重合を調べ、0.5GPaと4GPa以下で起こる2つの相転移を明らかにした。20GPa以上では、フェノールは水酸基とカルボニル基を持つ重合度4のCNTに重合する。ヒドロキシル基の水素移動は、重合度6のナノスレッドの形成を妨げることがわかった。この発見は、さらなるカラム内重合を阻止する水酸基の重要な役割を浮き彫りにし、今後のメカニズム研究やナノ材料合成に貴重な示唆を与えるものである。

論文

Solid-state Alder-ene reaction of 1-hexene under high pressure

Xu, J.*; Lang, P.*; Liang, S.*; Zhang, J.*; Fei, Y.*; Wang, Y.*; Gao, D.*; 服部 高典; 阿部 淳*; Dong, X.*; et al.

Journal of Physical Chemistry Letters (Internet), p.2445 - 2451, 2025/00

 被引用回数:0 パーセンタイル:0.00(Chemistry, Physical)

アルダー-エン反応は、アルケンとアリル水素との化学反応であり、C-C結合を構築する効率的な方法である。従来、この反応には触媒、高温、あるいは光触媒が必要であった。本研究では、触媒を用いずに室温下で加圧することで成功した1-ヘキセンのアルダー-エン反応を報告する。1-ヘキセンは4.3GPaで結晶化し、18GPaで重合してオレフィンを形成する。ガスクロマトグラフィー-質量分析法により、1-ヘキセンが高圧下でのアルダー-エン反応により二量体を生成することを発見した。その場中性子回折から、この反応過程はトポケミカル則に従わないことがわかった。理論計算により、1つのC-H $$sigma$$結合と2つのアルケン$$pi$$結合を含む6員環遷移状態が示され、そのエネルギーは20GPaまで圧縮すると明らかに減少した。本研究は、触媒を用いずに室温でアルダー-エン反応を実現する新規かつ有望な方法を提供し、この重要な反応の応用を拡大するものである。

論文

Strong low-energy rattling modes enabled liquid-like ultralow thermal conductivity in a well-ordered solid

Liu, P.-F.*; Li, X.*; Li, J.*; Zhu, J.*; Tong, Z.*; 古府 麻衣子*; 楡井 真実; Xu, J.*; Yin, W.*; Wang, F.*; et al.

National Science Review, 11(12), p.nwae216_1 - nwae216_10, 2024/12

 被引用回数:12 パーセンタイル:91.22(Multidisciplinary Sciences)

Crystalline solids exhibiting inherently low lattice thermal conductivity ($$kappa_{rm L}$$) are of great importance in applications such as thermoelectrics and thermal barrier coatings. However, $$kappa_{rm L}$$ cannot be arbitrarily low and is limited by the minimum thermal conductivity related to phonon dispersions. In this work, we report the liquid-like thermal transport in a well-ordered crystalline CsAg$$_5$$Te$$_3$$, which exhibits an extremely low $$kappa_{rm L}$$ value of $$sim$$ 0.18 Wm$$^{-1}$$K$$^{-1}$$. On the basis of first-principles calculations and inelastic neutron scattering measurements, we find that there are lots of low-lying optical phonon modes at $$sim$$ 3.1 meV hosting the avoided-crossing behavior with acoustic phonons. These strongly localized modes are accompanied by weakly bound rattling Ag atoms with thermally induced large amplitudes of vibrations. Using the two-channel model, we demonstrate that coupling of the particle-like phonon modes and the heat-carrying wave-like phonons is essential for understanding the low $$kappa_{rm L}$$, which is heavily deviated from the $$1/T$$ temperature dependence of the standard Peierls theory. In addition, our analysis indicates that the soft structural framework with liquid-like motions of the fluctuating Ag atoms is the underlying cause that leads to the suppression of the heat conduction in CsAg$$_5$$Te$$_3$$. These factors synergistically account for the ultralow $$kappa_{rm L}$$ value. Our results demonstrate that the liquid-like heat transfer could indeed exist in a well-ordered crystal.

論文

Anomalous dislocation response to deformation strain in CrFeCoNiPd high-entropy alloys with nanoscale chemical fluctuations

Ying, H.*; Yang, X.*; He, H.*; Yan, A.*; An, K.*; Ke, Y.*; Wu, Z.*; Tang, S.*; Zhang, Z.*; Dong, H.*; et al.

Scripta Materialia, 250, p.116181_1 - 116181_7, 2024/09

 被引用回数:1 パーセンタイル:41.92(Nanoscience & Nanotechnology)

Nanoscale chemical fluctuations and their effect on the deformation behavior of CrFeCoNi-based high-entropy alloys (HEAs) were investigated using small-angle scattering and in situ neutron diffraction measurements. Small-angle scattering results demonstrated the presence of nano ($$>$$10 nm) chemical fluctuations in the as-prepared CrFeCoNiPd HEAs, which was attributed to the negative mixing of enthalpy and the significant atomic radius difference between Pd and the constituent elements in the CrFeCoNi-based alloys. Subsequent tensile tests demonstrated that the yield and tensile strengths of the as-prepared CrFeCoNiPd HEA surpass those of the as-prepared CrMnFeCoNi HEA. Neutron diffraction data analysis revealed an anomalous response of dislocation evolution with the strain.

論文

Gradient residual stress and fatigue life prediction of induction hardened carbon steel S38C axles; Experiment and simulation

Qin, T. Y.*; Hu, F. F.*; 徐 平光; Zhang, H.*; Zhou, L.*; Ao, N.*; Su, Y. H.; 菖蒲 敬久; Wu, S. C.*

International Journal of Fatigue, 185, p.108336_1 - 108336_13, 2024/08

 被引用回数:8 パーセンタイル:94.71(Engineering, Mechanical)

Gradient distribution of triaxial residual stresses to a depth of several millimeters is retained in middle carbon steel S38C axles after high-frequency induction hardening, which has become a critical concern for fatigue structural integrity. To address this, the axial, hoop, and radial gradient residual strains inside the axles were measured for the first time by advanced neutron diffraction. The SIGINI Fortran subroutine was then adopted to reconstruct the global initial residual stress field from the measured data. Experimental and simulation results show that residual stresses of about -520 MPa (axial), -710 MPa (hoop), and -40 MPa (radial) residual stress were retained below the axle surface. Subsequently, the fatigue crack propagation behavior of S38C axles was numerically investigated in the framework of fracture mechanics. The calculated results clearly show that the compressive residual stresses at a depth of 0?3 mm from the axle surface lead to a low crack growth driving force, and that fatigue cracks do not propagate as long as the crack depth is less than 3.7 mm for hollow S38C axles. These results further indicate that the maximum defect size allowed in routine inspections is acceptable from a safety and economic point of view. Accurate measurement and characterization of the global gradient residual stress field through experiments and simulations can provide an important reference for optimizing the mileage intervals of nondestructive testing (NDT) of surface defects in these surface-strengthened railway axles.

論文

Gradient residual strain measurement procedure in surface impacted railway steel axles by using neutron scattering

Zhou, L.*; Zhang, H.*; Qin, T. Y.*; Hu, F. F.*; 徐 平光; Ao, N.*; Su, Y. H.; He, L. H.*; Li, X. H.*; Zhang, J. R.*; et al.

Metallurgical and Materials Transactions A, 55(7), p.2175 - 2185, 2024/07

 被引用回数:3 パーセンタイル:75.40(Materials Science, Multidisciplinary)

High-speed railway S38C axles undergo surface induction hardening for durability, but are susceptible to fatigue cracks from foreign object impact. The neutron diffraction method was employed to measure the residual strain in S38C axles, obtaining microscopic lattice distortion data, for the gradient layer at a depth of 8 mm under the surface. The results showed that after induction-hardening, the microscopic lattice distortion had a gradient distribution, decreasing with the distance from the surface. However, in the case of impacting speed of 600 km/m, the average microscopic lattice distortion increased with the distance from the surface, reaching a maximum augmentation of 55 pct. These findings indicate a strong experimental basis, and improve our understanding of the relationship between macroscopic residual stress and decision-making, in regard to operation and maintenance.

論文

Spectral evidence for Dirac spinons in a kagome lattice antiferromagnet

Zeng, Z.*; Zhou, C.*; Zhou, H.*; Han, L.*; Chi, R.*; Li, K.*; 古府 麻衣子; 中島 健次; Wei, Y.*; Zhang, W.*; et al.

Nature Physics, 20(7), p.1097 - 1102, 2024/07

 被引用回数:10 パーセンタイル:94.36(Physics, Multidisciplinary)

Emergent quasiparticles with a Dirac dispersion in condensed matter systems can be described by the Dirac equation for relativistic electrons, in analogy with Dirac particles in high-energy physics. For example, electrons with a Dirac dispersion have been intensively studied in electronic systems such as graphene and topological insulators. However, charge is not a prerequisite for Dirac fermions, and the emergence of Dirac fermions without a charge degree of freedom has been theoretically predicted to be realized in Dirac quantum spin liquids. These quasiparticles carry a spin of 1/2 but are charge-neutral and so are called spinons. Here we show that the spin excitations of a kagome antiferromagnet, YCu$$_3$$(OD)$$_6$$Br$$_2$$[Br$$_{0.33}$$(OD)$$_{0.67}$$], are conical with a spin continuum inside, which is consistent with the convolution of two Dirac spinons. The predictions of a Dirac spin liquid model with a spinon velocity obtained from spectral measurements are in agreement with the low-temperature specific heat of the sample. Our results, thus, provide spectral evidence for a Dirac quantum spin liquid state emerging in this kagome lattice antiferromagnet. However, the locations of the conical spin excitations differ from those calculated by the nearest-neighbor Heisenberg model, suggesting the Dirac spinons have an unexpected origin.

論文

Dual nanoprecipitation and nanoscale chemical heterogeneity in a secondary hardening steel for ultrahigh strength and large uniform elongation

Wang, S.*; Wang, J.*; Zhang, S.*; Wei, D.*; Chen, Y.*; Rong, X.*; Gong, W.; Harjo, S.; Liu, X.*; Jiao, Z.*; et al.

Journal of Materials Science & Technology, 185, p.245 - 258, 2024/06

 被引用回数:15 パーセンタイル:97.90(Materials Science, Multidisciplinary)

Nanoprecipitates and nanoscale retained austenite (RA) with suitable stability play crucial roles in determining the yield strength (YS) and ductility of ultrahigh strength steels (UHSSs). However, owing to the kinetics incompatibility between nanoprecipitation and austenite reversion, it is highly challenging to simultaneously introduce high-density nanoprecipitates and optimized RA in UHSSs. In this work, through the combination of austenite reversion treatment (ART) and subsequent flash austenitizing (FA), nanoscale chemical heterogeneity was successfully introduced into a low-cost UHSS prior to the aging process. This chemical heterogeneity involved the enrichment of Mn and Ni in the austenite phase. The resulting UHSS exhibited dual-nanoprecipitation of Ni(Al,Mn) and (Mo,Cr)$$_{2}$$ C and nanoscale austenite stabilized via Mn and Ni enrichment. The hard martensitic matrix strengthened by high-density dual-nanoprecipitates constrains the plastic deformation of soft RA with a relatively low fraction, and the presence of relatively stable nanoscale RA with adequate Mn and Ni enrichment leads to a marginal loss in YS but keeps a persistent transformation-induced plasticity (TRIP) effect. As a result, the newly-developed UHSS exhibits an ultrahigh YS of 1.7 GPa, an ultimate tensile strength (UTS) of 1.8 GPa, a large uniform elongation (UE) of 8.5 percent, and a total elongation (TE) of 13 percent. The strategy of presetting chemical heterogeneity to introduce proper metastable phases before aging can be extended to other UHSSs and precipitation-hardened alloys.

論文

Spin and lattice dynamics in the van der Waals antiferromagnet MnPSe$$_{3}$$

Liao, J.*; Huang, Z.*; Shangguan, Y.*; Zhang, B.*; Cheng, S.*; Xu, H.*; 梶本 亮一; 蒲沢 和也*; Bao, S.*; Wen, J.*

Physical Review B, 109(22), p.224411_1 - 224411_10, 2024/06

 被引用回数:0 パーセンタイル:0.00(Materials Science, Multidisciplinary)

Antiferromagnetic van der Waals family $$M$$P$$X_{3}$$ ($$M$$ = Fe, Mn, Co, and Ni; $$X$$ = S and Se) have attracted significant research attention due to the possibility of realizing long-range magnetic order down to the monolayer limit. Here, we perform inelastic neutron scattering measurements on single-crystal samples of MnPSe$$_{3}$$, a member of the $$M$$P$$X_{3}$$ family, to study the spin dynamics and determine the effective spin model. The excited magnon bands are well characterized by a spin model, which includes a Heisenberg term with three intraplane exchange parameters ($$J_{1} = -0.73$$ meV, $$J_{2} = -0.014$$ meV, $$J_{3} = -0.43$$ meV) and one interplane parameter ($$J_{c} = -0.054$$ meV), and an easy-plane single-ion anisotropy term ($$D = -0.035$$ meV). Additionally, we observe the intersection of the magnon and phonon bands but no anomalous spectral features induced by the formation of magnon-phonon hybrid excitations at the intersecting region. We discuss possible reasons for the absence of such hybrid excitations in MnPSe$$_{3}$$.

論文

Direct observations of dynamic and reverse transformation of Ti-6Al-4V alloy and pure titanium

Guo, B.*; Chen, H.*; Chong, Y.*; Mao, W.; Harjo, S.; Gong, W.; Zhang, Z.*; Jonas, J. J.*; 辻 伸泰*

Acta Materialia, 268, p.119780_1 - 119780_11, 2024/04

 被引用回数:9 パーセンタイル:92.77(Materials Science, Multidisciplinary)

This paper focused on the characterization and mechanism of the dynamic transformation from the alpha to beta phase during the hot deformation of Ti-6Al-4V alloy and pure titanium. The investigation employed in-situ neutron diffraction and atomistic simulations for a comprehensive understanding of the process. Dynamic transformations were observed during deformation of the Ti-6Al-4V alloy and pure titanium below the beta transus temperatures. During isothermal holding after unloading, the in-situ neutron diffraction results for Ti-6Al-4V and pure titanium indicated a sluggish reverse transformation from the beta to alpha phase. The mechanism of dynamic transformation was explored through in-situ neutron diffraction and atomistic simulations, which revealed twofold effects of deformation on dynamic transformation. Firstly, deformation led to a significant rise in the Gibbs energy of the alpha phase relative to the beta phase, expanding the beta phase region and diminishing the alpha phase region. Secondly, deformation lowered the energy barriers associated with dynamic transformation, facilitating the activation of dynamic transformation more readily than in the equilibrium state before deformation.

論文

Crystal-liquid duality driven ultralow two-channel thermal conductivity in $$alpha$$-MgAgSb

Li, J.*; Li, X.*; Zhang, Y.*; Zhu, J.*; Zhao, E.*; 古府 麻衣子; 中島 健次; Avdeev, M.*; Liu, P.-F.*; Sui, J.*; et al.

Applied Physics Reviews (Internet), 11(1), p.011406_1 - 011406_8, 2024/03

 被引用回数:7 パーセンタイル:91.57(Physics, Applied)

The desire for intrinsically low lattice thermal conductivity ($$kappa_L$$) in thermoelectrics motivates numerous efforts on understanding the microscopic mechanisms of heat transport in solids. Here, based on theoretical calculations, we demonstrate that $$alpha$$-MgAgSb hosts low-energy localized phonon bands and avoided crossing of the rattler modes, which coincides with the inelastic neutron scattering result. Using the two-channel lattice dynamical approach, we find, besides the conventional contribution ($$sim$$70% at 300 K) from particlelike phonons propagating, the coherence contribution dominated by the wavelike tunneling of phonons accounts for $$sim$$30% of total $$kappa_L$$ at 300 K. By considering dual contributions, our calculated room-temperature $$kappa_L$$ of 0.64 Wm$$^{-1}$$K$$^{-1}$$ well agrees with the experimental value of 0.63 Wm$$^{-1}$$K$$^{-1}$$. More importantly, our computations give a nonstandard $$kappa_L propto T^{-0.61}$$ dependence, perfectly explaining the abnormal temperature-trend of $$sim T^{-0.57}$$ in experiment for $$alpha$$-MgAgSb. By molecular dynamics simulation, we reveal that the structure simultaneously has soft crystalline sublattices with the metavalent bonding and fluctuating liquid-like sublattices with thermally induced large amplitude vibrations. These diverse forms of chemical bonding arouse mixed part-crystal part-liquid state, scatter strongly heat-carrying phonons, and finally produce extremely low $$kappa_L$$. The fundamental research from this study will accelerate the design of ultralow-$$kappa_L$$ materials for energy-conversion applications.

論文

The BCC $$rightarrow$$ FCC hierarchical martensite transformation under dynamic impact in FeMnAlNiTi alloy

Li, C.*; Fang, W.*; Yu, H. Y.*; Peng, T.*; Yao, Z. T.*; Liu, W. G.*; Zhang, X.*; 徐 平光; Yin, F.*

Materials Science & Engineering A, 892, p.146096_1 - 146096_11, 2024/02

 被引用回数:4 パーセンタイル:82.70(Nanoscience & Nanotechnology)

The quasi-static superelastic responses and hierarchical martensite transformation from body-centered cubic (BCC) to face-centered cubic (FCC) under dynamic impact in Fe$$_{42}$$Mn$$_{34}$$Al$$_{15}$$Ni$$_{7.5}$$Ti$$_{1.5}$$ alloys were investigated. Polycrystalline and oligocrystalline alloys were produced through solution heat treatment and cyclic heat treatment processes, respectively. The results show the volume fraction of residual martensite for oligocrystalline alloys is lower, which exhibits better superelastic responses compared with polycrystalline alloys. Dynamic impact tests indicate that, despite the weakening of the grain boundary strengthening effect, the ultimate strength of the oligocrystalline alloys closely matches that of the polycrystalline alloys under dynamic impact. The martensite transformation of the FeMnAlNiTi alloy is characterized as hierarchical under dynamic impact, and increasing strain rates and grain sizes can enhance the BCC $$rightarrow$$ FCC martensite transformation, resulting in higher martensite phase fractions for oligocrystalline alloys. The increase in ultimate strength is attributed to the dynamic Hall-Petch effect introduced by more martensite phase interfaces under dynamic impact.

論文

Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co$$_{1/3}$$TaS$$_{2}$$

Park, P.*; Cho, W.*; Kim, C.*; An, Y.*; Kang, Y.-G.*; Avdeev, M.*; Sibille, R.*; 飯田 一樹*; 梶本 亮一; Lee, K. H.*; et al.

Nature Communications (Internet), 14, p.8346_1 - 8346_9, 2023/12

 被引用回数:21 パーセンタイル:84.93(Multidisciplinary Sciences)

The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120$$^{circ}$$ structure. However, a new triple-$$mathbf{Q}$$ chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co$$_{1/3}$$TaS$$_{2}$$ as the first example of tetrahedral triple-$$mathbf{Q}$$ magnetic ordering with the associated topological Hall effect (non-zero $$sigma_{xy}(mathbf{H}=0)$$). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple-$$mathbf{Q}$$ state.

論文

3D-printed epidermal sweat microfluidic systems with integrated microcuvettes for precise spectroscopic and fluorometric biochemical assays

Yang, D. S.*; Wu, Y.*; Kanatzidis, E. E.*; Avila, R.*; Zhou, M.*; Bai, Y.*; Chen, S.*; 関根 由莉奈; Kim, J.*; Deng, Y.*; et al.

Materials Horizons, 10(11), p.4992 - 5003, 2023/09

 被引用回数:12 パーセンタイル:79.80(Chemistry, Multidisciplinary)

本論文では、ハード及びソフトハイブリッド材料システムでの3Dプリントによって形成されたマイクロ流体ネットワーク、統合バルブ、およびマイクロスケール光学キュベットにより、汗成分に対してその場で分光および蛍光分析した成果を紹介する。一連の試験により、これらのマイクロキュベットシステムが汗中の銅、塩化物、グルコースの濃度と汗のpHを実験室レベルの精度と感度で評価できることが実証された。

論文

A One-third magnetization plateau phase as evidence for the Kitaev interaction in a honeycomb-lattice antiferromagnet

Shangguan, Y.*; Bao, S.*; Dong, Z.-Y.*; Xi, N.*; Gao, Y.-P.*; Ma, Z.*; Wang, W.*; Qi, Z.*; Zhang, S.*; Huang, Z.*; et al.

Nature Physics, 19(12), p.1883 - 1889, 2023/09

 被引用回数:19 パーセンタイル:94.19(Physics, Multidisciplinary)

The magnetization of a quantum magnet can be pinned at a fraction of its saturated value by collective effects. One example of such a plateau phase is found in spin-1/2 triangular-lattice antiferromagnets. They feature strong geometrical frustration and the plateau phase therein is often interpreted as arising from an order-by-disorder mechanism driven by quantum fluctuations. Here we observe a one-third magnetization plateau under an applied magnetic field in the spin-1 antiferromagnet Na$$_{3}$$Ni$$_{2}$$BiO$$_{6}$$ with a honeycomb lattice, which, with conventional magnetic interactions, would not be geometrically frustrated. Based on our elastic neutron scattering measurements, we propose the spin structure of the plateau phase to be an unusual partial spin-flop ferrimagnetic order. Our theoretical calculations indicate that bond-anisotropic Kitaev interactions are the source of frustration that produces the plateau. These results suggest that Kitaev interactions provide a different route to frustration and phases driven by quantum fluctuations in high-spin magnets.

論文

Corrosion fatigue crack growth behavior of a structurally gradient steel for high-speed railway axles

Ao, N.*; Zhang, H.*; Xu, H. H.*; Wu, S. C.*; Liu, D.*; 徐 平光; Su, Y. H.; Kang, Q. H.*; Kang, G. Z.*

Engineering Fracture Mechanics, 281, p.109166_1 - 109166_14, 2023/03

 被引用回数:12 パーセンタイル:83.88(Mechanics)

Considering the complex service environments that high-speed railway axles are subjected to, the fatigue crack growth (FCG) behavior of a structurally gradient axle steel with different pre-crack depths both in air and corrosive medium was investigated at a frequency of 5 Hz. The results indicated that in the high $$Delta$$$$K$$ region, FCG rate was dramatically accelerated by corrosion, but the gap narrows as $$Delta$$$$K$$ decreased. The accelerated corrosion FCG rate was a comprehensive result of the acceleration effect of the anodic dissolution, hydrogen-enhanced localized plasticity and the retardation effect of corrosion-induced crack-tip blunting. Despite the fact that the corrosion resistance gradually decreased as the pre-crack depth increased, the FCG rate in the corrosive medium gradually decreased. This was because fatigue loading played a more important role than corrosion in accelerating the corrosion FCG rate.

論文

Tensile overload-induced texture effects on the fatigue resistance of a CoCrFeMnNi high-entropy alloy

Lam, T.-N.*; Chin, H.-H.*; Zhang, X.*; Feng, R.*; Wang, H.*; Chiang, C.-Y.*; Lee, S. Y.*; 川崎 卓郎; Harjo, S.; Liaw, P. K.*; et al.

Acta Materialia, 245, p.118585_1 - 118585_9, 2023/02

 被引用回数:24 パーセンタイル:88.92(Materials Science, Multidisciplinary)

The present study investigates the crystallographic-texture effects on the improved fatigue resistance in the CoCrFeMnNi high-entropy alloys (HEAs) with the full-size geometry of the ASTM Standards E647-99. We exploited X-ray nano-diffraction mapping to characterize the crystal-deformation levels ahead of the crack tip after stress unloading under both constant- and tensile overloaded-fatigue conditions. The crack-tip blunting-induced much higher deformation level was concentrated surrounding the crack-tip which delays the fatigue-crack growth immediately after a tensile overload. The predominant deformation texture orientation in the Paris regime was investigated, using electron backscatter diffraction and orientation distribution function analyses. The twinning formation-driven shear deformation gave rise to the development of the Goss-type texture within the plastic deformation regime under a tensile-overloaded-fatigue condition, which was attributed to enhance the crack deflection and thus the tensile induced crack-growth-retardation period in the CoCrFeMnNi HEA.

114 件中 1件目~20件目を表示