Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kinase, Akari; Goto, Katsunori*; Aono, Ryuji; Konda, Miki; Sato, Yoshiyuki; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2024-004, 60 Pages, 2024/07
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2 and JRR-3 and stored at the waste storage facility L. In this report, we summarized the radioactivity concentrations of 20 radionuclides (H, C, Cl, Co, Ni, Sr, Nb, Tc, Ag, I, Cs, Eu, Eu, U, U, Pu, Pu, Pu, Am, Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2022.
Aono, Ryuji; Haraga, Tomoko; Kameo, Yutaka
JAEA-Technology 2024-006, 48 Pages, 2024/06
In the future, radioactive waste which generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. It is necessary to establish the method to evaluate the radioactivity concentrations of the radioactive wastes. In this work, we studied the evaluation methodology of the radioactivity concentrations in concrete waste generated from JPDR. In order to construct the evaluation methodology of the radioactivity concentration, the validity of the evaluation methods was confirmed by mainly theoretical calculation and using the result of radiochemical analysis. Correcting the theoretical calculations using results of nuclide analysis, it is possible to evaluate the radioactivity concentrations of nuclides preliminary selected.
Tobita, Minoru*; Goto, Katsunori*; Omori, Takeshi*; Osone, Osamu*; Haraga, Tomoko; Aono, Ryuji; Konda, Miki; Tsuchida, Daiki; Mitsukai, Akina; Ishimori, Kenichiro
JAEA-Data/Code 2023-011, 32 Pages, 2023/11
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to the study of radioactivity concentration evaluation methods for radioactive wastes generated from nuclear research facilities, we collected and analyzed concrete samples generated from JRR-3, JRR-4 and JAERI Reprocessing Test Facility. In this report, we summarized the radioactivity concentrations of 23 radionuclides (H, C, Cl, Ca, Co, Ni, Sr, Nb, Ag, Cs, Ba, Eu, Eu, Ho, U, U, U, Pu, Pu, Pu, Am, Am, Cm) which were obtained from radiochemical analysis of the samples in fiscal years 2021-2022.
Aono, Ryuji; Mitsukai, Akina; Tsuchida, Daiki; Konda, Miki; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2023-002, 81 Pages, 2023/05
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2, JRR-3 and Hot laboratory facilities. In this report, we summarized the radioactivity concentrations of 20 radionuclides (H, C, Cl, Co, Ni, Sr, Nb, Tc, Ag, I, Cs, Eu, Eu, U, U, Pu, Pu, Pu, Am, Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2020.
Tobita, Minoru*; Konda, Miki; Omori, Takeshi*; Nabatame, Tsutomu*; Onizawa, Takashi*; Kurosawa, Katsuaki*; Haraga, Tomoko; Aono, Ryuji; Mitsukai, Akina; Tsuchida, Daiki; et al.
JAEA-Data/Code 2022-007, 40 Pages, 2022/11
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete, ash, ceramic and brick samples generated from JRR-3, JRR4 and JRTF facilities. In this report, we summarized the radioactivity concentrations of 24 radionuclides (H, C, Cl, Ca, Co, Ni, Sr, Nb, Tc, Ag, I, Cs, Ba, Eu, Eu, Ho, U, U, Pu, Pu, Pu, Am, Am, Cm) which were obtained from radiochemical analysis of the samples in fiscal years 2020-2021.
Tsuchida, Daiki; Mitsukai, Akina; Aono, Ryuji; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2022-004, 87 Pages, 2022/07
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until by the beginning of disposal. In order to contribute to this work, we collected and analyzed samples generated from JPDR, JRR-3 and JRR-4. In this report, radioactivity concentrations of 20 radionuclides (H, C, Cl, Co, Ni, Sr, Nb, Tc, Ag, I, Cs, Eu, Eu, U, U, Pu, Pu, Am, Cm) were determined based on radiochemical analysis and summarized as basic data for the study of evaluation method of radioactive concentration.
Tobita, Minoru*; Haraga, Tomoko; Endo, Tsubasa*; Omori, Hiroyuki*; Mitsukai, Akina; Aono, Ryuji; Ueno, Takashi; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2021-013, 30 Pages, 2021/12
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JPDR facility. In this report, we summarized the radioactivity concentrations of 21 radionuclides (H, C, Cl, Ca, Co, Ni, Sr, Nb, Ag, Cs, Eu, Eu, Ho, U, U, Pu, Pu, Pu, Am, Am, Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2018-2019.
Tsuchida, Daiki; Haraga, Tomoko; Tobita, Minoru*; Omori, Hiroyuki*; Omori, Takeshi*; Murakami, Hideaki*; Mitsukai, Akina; Aono, Ryuji; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2020-022, 34 Pages, 2021/03
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JRR-3 and JPDR. In this report, we summarized the radioactivity concentrations of 22 radionuclides(H, C, Cl, Ca, Co, Ni, Sr, Nb, Ag, Ba, Cs, Eu, Eu, Ho, U, U, Pu, Pu, Am, Am, Cm) which were obtained from radiochemical analysis of the samples.
Aono, Ryuji; Mitsukai, Akina; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2020-006, 70 Pages, 2020/08
Radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried at the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from JPDR and JRR-4. In this report, we summarized the radioactivity concentrations of 19 radionuclides (H, C, Cl, Co, Ni, Sr, Nb, Tc, Ag, I, Cs, Eu, Eu, U, U, Pu, Pu, Am, Cm) which were obtained from radiochemical analysis of those samples.
Sato, Yoshiyuki; Aono, Ryuji; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Testing 2019-003, 20 Pages, 2019/12
In the Radioactive Waste Management Technology Section, the radioactive liquid waste generated in the test using natural uranium in the past has been stored based on the contents of permission. Although we decided to perform solidification treatment in order to reduce the risk in storage, no rational treatment method has been established so far. Therefore, we examined adsorption treatment of natural uranium using uranium adsorbent (Tannix), and finally stabilized treatment by cement solidification. The treatment methods and findings obtained for a series of operations in waste liquid treatment are summarized in this report for reference when treating similar liquid waste.
Tanaka, Taiki*; Narikiyo, Yoshihiro*; Morita, Kosuke*; Fujita, Kunihiro*; Kaji, Daiya*; Morimoto, Koji*; Yamaki, Sayaka*; Wakabayashi, Yasuo*; Tanaka, Kengo*; Takeyama, Mirei*; et al.
Journal of the Physical Society of Japan, 87(1), p.014201_1 - 014201_9, 2018/01
Times Cited Count:20 Percentile:74.66(Physics, Multidisciplinary)Excitation functions of quasielastic scattering cross sections for the Ca + Pb, Ti + Pb, and Ca + Cm reactions were successfully measured by using the gas-filled recoil-ion separator GARIS. Fusion barrier distributions were extracted from these data, and compared with the coupled-channels calculations. It was found that the peak energies of the barrier distributions for the Ca + Pb and Ti + Pb systems coincide with those of the 2n evaporation channel cross sections for the systems, while that of the Ca + Cm is located slightly below the 4n evaporation ones. This results provide us helpful information to predict the optimum beam energy to synthesize superheavy nuclei.
Aono, Ryuji; Sato, Yoshiyuki; Shimada, Asako; Tanaka, Kiwamu; Ueno, Takashi; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Technology 2017-025, 32 Pages, 2017/11
We have developed analytical methods for Zr, Mo, Pd and Sn, which are considered important in terms of the safety assessment of radioactive waste disposal. The methods are specialized for the wastes left after Fukushima accident. As the main analytical sample, we assumed accumulated water / treated water collected at Fukushima Daiichi Nuclear Power Station. As for Zr, Mo, Pd and Sn contained in this accumulated water / treated water, we have worked on the development of separation and purification method of target nuclide and improvement of recovery, and summarized these results in this report.
Sato, Yoshiyuki; Aono, Ryuji; Konda, Miki; Tanaka, Kiwamu; Ueno, Takashi; Ishimori, Kenichiro; Kameo, Yutaka
Proceedings of 54th Annual Meeting of Hot Laboratories and Remote Handling (HOTLAB 2017) (Internet), 13 Pages, 2017/00
no abstracts in English
Kitatsuji, Yoshihiro; Fukaya, Hiroyuki; Haraga, Tomoko; Oka, Toshitaka; Otake, Yoshinori; Tambo, Masaki; Inada, Arisa; Aono, Ryuji; Kinase, Akari; Ikarugi, Riko; et al.
no journal, ,
To proceed with the decommissioning of Fukushima Daiichi Nuclear Power Station Accident (1F), it is necessary to secure human resources for radionuclide analysis, which is a prerequisite for the safe treatment and disposal of treated water and waste containing radionuclides generated as a result of the decommissioning. The Nuclear Science Research Institute of JAEA, together with the Fukushima Research and Engineering Institute, has started a project to train analytical personnel who will be responsible for decommissioning in the future. In this presentation, we will introduce the training of analytical operators, managers, and engineers for young staff members and our efforts using the summer intern program.
Aono, Ryuji; Sato, Yoshiyuki; Konda, Miki; Tanaka, Kiwamu; Ueno, Takashi; Ishimori, Kenichiro; Kameo, Yutaka
no journal, ,
A large amount of contaminated rubble was generated by the accident at the Fukushima Daiichi Nuclear Power Station (F1NPS). For safe decommissioning of F1NPS, it is important to evaluate the composition and concentration of radionuclides in the rubble. To characterize the rubble collected at F1NPS, radiochemical analysis was conducted. From the rubble collected from reactor buildings, H, C, Co, Ni, Se, Sr, Tc, I, Cs, Eu, Pu, Am and Cm were detected. The radioactivity concentrations of Co, Sr and Pu are correlated that of Cs. The radioactive ratio of Co/Cs, Sr/Cs and Pu/Cs were similar between the rubble collected from 1st floor and 5th floor of unit 1 reactor building. This result implied that regardless of sampling location in reactor building, the radioactive ratios of Co/Cs, Sr/Cs and Pu/Cs were consistent.
Nitta, Ayako; Hinai, Hiroshi; Sato, Yoshiyuki; Aono, Ryuji; Oki, Keiichi; Koma, Yoshikazu; Shibata, Atsuhiro
no journal, ,
no abstracts in English
Aono, Ryuji; Sato, Yoshiyuki; Ishimori, Kenichiro; Kameo, Yutaka
no journal, ,
no abstracts in English