Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
小山 知弘*; 家田 淳一; 千葉 大地*
Applied Physics Letters, 116(9), p.092405_1 - 092405_5, 2020/03
被引用回数:3 パーセンタイル:25.71(Physics, Applied)The electric field (EF) modulation of magnetic domain wall (DW) creep velocity in Pt/Co/Pd structure with perpendicular magnetic anisotropy (MA) has been studied. The structures with different Co thickness
up to
nm are investigated. In all samples, applying a gate voltage induces a clear change in
. Thicker samples provide a higher
modulation efficiency, and the
modulation magnitude of more than a factor of 100 times is observed in the thickest
of 0.98 nm. The parameter characterizing the creep motion is significantly affected by the EF, resulting in the modulation of
. Unlike the
case, the MA modulation efficiency decreases with increasing
. The present results are discussed based on the EF-induced change in the interfacial Dzyaloshinskii-Moriya interaction (iDMI), which has been recently demonstrated in the same structure, and
dependence of the DW energy. The
dependence of the
modulation suggests that the EF effect on the iDMI is more important than the MA.
小山 知弘*; 仲谷 栄伸*; 家田 淳一; 千葉 大地*
Science Advances (Internet), 4(12), p.eaav0265_1 - eaav0265_5, 2018/12
被引用回数:43 パーセンタイル:88.96(Multidisciplinary Sciences)Pt/Co/Pd非対称構造において電場が磁壁速度を制御できることを示す。ゲート電圧を印加すると、50m/sまでの磁壁速度の著しい変化が観察され、これは以前の研究で観察されたものよりはるかに大きい。さらに、100m/sを超える磁壁速度の明確な変調も確認した。電場による界面のDzyaloshinskii-Moriya相互作用(DMI)の数パーセントまでの変化が、速度変調の原因であることがわかった。ここに示されているDMIを介した速度変化は、電場による異方性変調によって引き起こされるものとは根本的に異なるメカニズムである。本結果は、スピントロニクスデバイスの性能を向上させることができるDMI制御によるスピン構造とダイナミクスの電気的操作への道を開くものである。
田辺 賢士*; 千葉 大地*; 大江 純一郎*; 葛西 伸哉*; 河野 日出夫*; Barnes, S. E.*; 前川 禎通; 小林 研介*; 小野 輝男*
Nature Communications (Internet), 3, p.845_1 - 845_5, 2012/05
被引用回数:40 パーセンタイル:82.25(Multidisciplinary Sciences)A change of magnetic flux through a circuit induces an electromotive force. By analogy, a recently predicated force that results from the motion of non-uniform spin structures has been termed the spin-motive force. Although recent experiments seem to confirm its presence, a direct signature of the spin-motive force has remained elusive. Here we report the observation of a real-time spin-motive force produced by the gyration of a magnetic vortex core. We report a good agreement between the experimental results, theory, and micromagnetic simulations, which, taken as a whole, provide strong evidence in favour of a spin-motive force.