検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 30 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Study of a tuner for a high-accuracy bunch shape monitor

守屋 克洋; 川根 祐輔*; 三浦 昭彦; 二ツ川 健太*; 宮尾 智章*

Journal of Physics; Conference Series, 1067, p.072009_1 - 072009_3, 2018/09

J-PARCリニアックでは、ビーム縦方向分布を観測するバンチシェイプモニタ(BSM)の高精度化を行っている。ビームをワイヤに当てることで、ビームと同じ時間(縦方向)構造を持つ2次電子をワイヤから生成する。この電子を高周波電場を用いて縦方向の情報を横方向に移すことで縦方向分布を観測する。このとき高周波電場の周波数は加速周波数と同期させる必要がある。BSMのRFディフレクタは2本の電極から構成され、目的の周波数が共振周波数となるように電極長を変えることで実現する。しかし電極長の製作精度は$$pm$$0.5mmであるため、従来の調整方法では周波数設定精度は$$pm$$390kHzであった。今回新たにチューナとして円柱ブロックを挿入することで、共振周波数を高精度に調節できることが数値シミュレーション(CST Studio)の結果から判明した。具体的には円柱挿入量$$pm$$0.1mmに対してを$$pm$$25kHzまで調節可能となる。これにより、共振周波数の粗い調節を電極長を変えることで、細かい調節を円柱ブロックを挿入することで共振周波数を極めて高い精度で調節できるようになる。現在、このチューナ付きBSMの製作を行っている。今回の発表では数値計算結果について報告する。

論文

J-PARCリニアックのビームロスモニタによるインターロックイベント

林 直樹; 菊澤 信宏; 三浦 昭彦; 二ツ川 健太*; 宮尾 智章*

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.540 - 544, 2017/12

J-PARCリニアックは、安定な利用運転を行っているが、最近は、リニアック・ロスモニタ単独1台のみによるインターロック事象が増加している。その回数は、RFQトリップ回数に迫るほどであり、運転効率の改善に向けて、対策が必要となってきた。そこで、各事象毎のデータを詳しく解析し、事象を3つに分類、それぞれに特徴的な、ロスモニタの分布・パターンを見出した。リニアックのロスモニタは、一般的なものではあるが、時間分解能重視のため、J-PARCの他のリングシンクロトロンとは異なった設定、プリアンプの入力インピーダンスは50$$Omega$$、生信号での閾値・幅をインターロック条件としている点についても改善のための検討・試行を実施した。

論文

J-PARC L3BTにおけるバンチシェイプモニタの検討

守屋 克洋; 岡部 晃大; Liu, Y.*; 三浦 昭彦; 二ツ川 健太*

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.1081 - 1083, 2017/08

J-PARCでは、ビームの位相幅(縦方向プロファイル)を測定するためのバンチシェイプモニタ(BSM)の高度化を進めている。リニアックと後段シンクロトロン(RCS)を結ぶビーム輸送ライン(L3BT)でビーム位相幅の測定が可能になれば、縦方向マッチング、ビームローディング観測、横方向モニタと組み合わせた縦横結合共鳴観測などが実施できる。それにより、現状に比べてより精細な線形加速器のビーム加速調整、及び、空間電荷効果を考慮したビーム力学理論の検証が可能になり、ビームロスの低減と運転安定化が期待できる。そこで、L3BT用BSMの設計に際し、L3BTを通過するビームを数値計算上で再現し、BSMの本体設計や設置位置等の検討を開始した。BSM1台でビーム縦方向のパラメータを求めるために、上流の空洞電圧を変えてBSMでビーム位相幅への影響を測定(以下,縦方向Q-scan)すればよいが、空洞の収束力やBSMとの位置関係によっては、必要な精度が得られない可能性がある。そこで数値計算を行い、必要な精度を得るための条件を求めBSMの設計を行った。また既存のモニタを用いて縦方向Q-scan時のビーム位相幅の変化を観測した結果、数値計算と同様の結果が得られた。これは、J-PARC L3BTにBSMを導入することでビーム縦方向のパラメータを新たに観測できることを意味する。

論文

Beam-loss monitoring signals of interlocked events at the J-PARC Linac

林 直樹; 加藤 裕子; 三浦 昭彦; 二ツ川 健太*; 宮尾 智章*

Proceedings of 5th International Beam Instrumentation Conference (IBIC 2016) (Internet), p.368 - 371, 2017/03

通常運転中のビームロス要因について調べることは、重要である。真の要因対策ができれば、将来的に、インターロックの発報回数を減らすことができ、加速器運転の安定化にも資することができるからである。J-PARCリニアックでは、限定的であるが、インターロック時のロスモニタ、ビーム電流の波形を、複数台のオシロスコープで記録している。加速空洞のインターロックにより、ビームロスが発生するのは当然であるが、より詳細に、どのモニターがより高いロス信号を受けるか、空洞インターロックとビームロスのパターンの関係性を知ることが大切である。特に興味があるのは、空洞など機器インターロックの発報はなくて、ロスモニタのみがインターロック発報する事象である。これらの幾つかについて、分析を行い、考えられる対策について紹介する。

論文

J-PARCリニアック製のバンチ・シェープ・モニタの開発

二ツ川 健太*; 川根 祐輔; 田村 潤; 根本 康雄; 林 直樹; 福岡 翔太*; 真山 実*; 三浦 昭彦; 宮尾 智章*

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.1246 - 1250, 2015/09

J-PARCリニアックでは、加速周波数が324MHzのRFQ, DTL, SDTL空洞と972MHzのACS空洞で負水素イオンビームを400MeVまで加速している。SDTLとACSの間にあるビーム輸送路(MEBT2)では、2式のバンチャー空洞で位相方向のマッチングを行う必要があるが、リニアックにはビーム位相方向の形状を測定するモニタがなかった。そこで、ロシア原子核研究所と共同でバンチ・シェープ・モニタ(BSM)を開発し、SDTLの下流に設置して試験を行った。しかし、このBSMは真空特性が悪かったため、ACS空洞をインストールするときにビームラインから取り外し、試験・ベーキングを実施したが、高い真空度を確保するために、ポンプの追加などの増強が不可欠であった。そこで、J-PARC独自でのBSMの開発を開始し、BSM本体の真空対策だけでなく、ビームライン上でベーキングが行えるように設置場所を変更した。また、二次電子の輸送に関してもシミュレーションを実施し、形状の最適化も実施した。本件では、新規に製作したJ-PARC製のBSMの真空特性とオフラインの試験結果を報告する。

論文

J-PARCリニアックにおけるビーム調整試験の進捗

丸田 朋史*; Liu, Y.*; 二ツ川 健太*; 宮尾 智章*; 三浦 昭彦; 池上 雅紀*

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.432 - 436, 2015/09

J-PARCリニアックは2013年と2014年の2年にわたり、ビームの大強度化のために加速器本体の増強を実施した。2013年には既設加速器の下流に25台のACS空洞を増設し、ビームエネルギーを181MeVから400MeVに増強した。2014年はフロントエンド部(イオン源とRFQ)を交換し、最大ピーク電流を30mAから50mAとした。フロントエンド交換後初となるリニアックの単独ビーム試験を2014年10月に実施し、約2週間の試験を経た10月15日に50mAビームの加速に成功した。設計ピーク電流50mAの加速に成功したことは、J-PARC加速器の1MW利用運転に向けた重要な一歩である。ビーム試験修了以降、現在まで30mAのビームを安定的に下流に供給している。本発表では、フロントエンド部交換後のリニアック単独のビーム試験結果、ビームプロファイル、ロスの状況について報告する。

論文

Precise determination of $$^{12}_{Lambda}$$C level structure by $$gamma$$-ray spectroscopy

細見 健二; Ma, Y.*; 味村 周平*; 青木 香苗*; 大樂 誠司*; Fu, Y.*; 藤岡 宏之*; 二ツ川 健太*; 井元 済*; 垣口 豊*; et al.

Progress of Theoretical and Experimental Physics (Internet), 2015(8), p.081D01_1 - 081D01_8, 2015/08

 被引用回数:6 パーセンタイル:38.64(Physics, Multidisciplinary)

$$gamma$$線分光によって$$^{12}_{Lambda}$$Cハイパー核のレベル構造を精密に測定した。ゲルマニウム検出器群Hyperball2を用いて、$$^{12}$$C$$(pi^{+}, K^{+}gamma)$$反応からの4本の$$gamma$$線遷移を同定することに成功した。基底状態スピン二重項$$(2^{-}, 1^{-}_{1})$$のエネルギー間隔は直接遷移$$M1$$$$gamma$$線により、$$161.5pm0.3$$(stat)$$pm0.3$$(syst)keVと測定された。また、励起準位である$$1^{-}_{2}$$$$1^{-}_{3}$$について、それぞれ、$$2832pm3pm4$$, keVと$$6050pm8pm7$$, keVと励起エネルギーを決定した。これらの測定された$$^{12}_{Lambda}$$Cの励起エネルギーは反応分光による$$lambda$$ハイパー核の実験研究において決定的な基準となる。

論文

J-PARCリニアックの現状

小栗 英知; 長谷川 和男; 伊藤 崇; 千代 悦司; 平野 耕一郎; 森下 卓俊; 篠崎 信一; 青 寛幸; 大越 清紀; 近藤 恭弘; et al.

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.389 - 393, 2014/10

J-PARCリニアックでは現在、ビームユーザに対する利用運転を行うとともに、リニアック後段の3GeVシンクロトロンにて1MWビームを加速するためのビーム増強計画を進めている。リニアックのビーム増強計画では、加速エネルギー及びビーム電流をそれぞれ増強する。エネルギーについては、181MeVから400MeVに増強するためにACS空洞及びこれを駆動する972MHzクライストロンの開発を行ってきた。これら400MeV機器は平成24年までに量産を終了し、平成25年夏に設置工事を行った。平成26年1月に400MeV加速に成功し、現在、ビーム利用運転に供している。ビーム電流増強では、初段加速部(イオン源及びRFQ)を更新する。イオン源はセシウム添加高周波放電型、RFQは真空特性に優れる真空ロー付け接合タイプ空洞をそれぞれ採用し、平成25年春に製作が完了した。完成後は専用のテストスタンドにて性能確認試験を行っており、平成26年2月にRFQにて目標の50mAビーム加速に成功した。新初段加速部は、平成26年夏にビームラインに設置する予定である。

論文

J-PARCリニアックチョッパシステムの開発

平野 耕一郎; 伊藤 崇; 近藤 恭弘; 篠崎 信一; 千代 悦司; 三浦 昭彦; 森下 卓俊; 池上 雅紀*; 久保田 親*; 杉村 高志*; et al.

Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.858 - 861, 2014/06

J-PARCリニアックの運転パラメータは、ピーク電流17mA、マクロパルス幅500$$mu$$s、繰り返し25Hz、ビームエネルギー181MeVである。マクロパルスビームは、RFQ下流のMEBT領域にあるRFチョッパ空洞の電界によって、その一部が蹴りだされ、櫛形構造を持つビームに整形される。この整形されたビームは、パルス幅600nsの中間パルスが1066nsの間隔で並んだ構造である。一方、蹴りだされたビームは、RFチョッパ空洞から約70cm離れた場所にあるスクレーパに負荷される。今後、イオン源、及び、RFQの改造、並びに、加速管の増設を行い、ビーム電流を50mA、ビームエネルギーを400MeVに増強する計画である。ビーム電流を50mAに増加すると、ビームがチョッパ空洞の電極やビームパイプにあたるシミュレーション結果が得られている。また、スクレーパの損傷が懸念される。そこで、ビーム電流50mAに対応したMEBTビームラインに改造する計画である。今回は、チョッパ空洞やスクレーパ等に関するチョッパシステムの改造について報告する。

論文

J-PARCリニアッククライストロン高圧電源停止頻度の改善

堀 利彦; 佐藤 文明; 篠崎 信一; 千代 悦司; 小栗 英知; 二ツ川 健太*; 福井 佑治*

Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.1001 - 1003, 2014/06

2012年夏期メンテナンス以降のビーム利用運転において、324MHzクライストロン用直流高圧電源の停止頻度が高くなり、加速器の稼働率を低下させていた。高圧停止時の過渡的な波形データより、アノード短絡現象が電源停止の一次的要因であることがわかった。アノード短絡の際に生じる電磁・輻射ノイズによって、モニタ用のNIMモジュールが誤動作しており、これによって高圧電源は正常動作しているにも関わらず出力を停止していた。NIMモジュール誤動作の有無は短絡時ノイズレベルの大小によって決定されているが、我々はクライストロン高圧・低圧制御盤に実装されているトリガー分配用NIMモジュールの誤動作対策を行うことで、高圧停止頻度の改善を図った。NIM基盤のアースライン強化やフォトカプラーを用いた入出力信号の電気的絶縁などの改造を行った結果、モジュール単体での誤動作回数は大幅に低減された。一方交換したクライストロンの使用状況から、アノード短絡の原因はクライストロン電子銃部のアノードとボディ間の放電であることが判明した。我々はこの放電時のノイズレベルを低減する又は放電回数を低減する方策を現在検討中である。

論文

J-PARCリニアック用クライストロン電源システムの現状2013

川村 真人*; 千代 悦司; 堀 利彦; 篠崎 信一; 佐藤 文明; 福井 佑治*; 二ツ川 健太*; 山崎 正義*; 佐川 隆*; 宮嶋 教至*; et al.

Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.605 - 607, 2014/06

J-PARCリニアック用クライストロン電源システムについて、過去1年間の運転状況等を報告する。181MeVリニアック運転対応として、2012年9月下旬より2013年5月下旬まで、年末年始の中断や、スケジュール化されたメンテナンス等を除き連続運転を行った。その間、AVR盤内制御線等のノイズ対策不備、アノード変調器内の電極部接触不良等の不具合による運転の中断があり、不具合の考察と対策などを行った。運転と並行して、2012年7月初めまで運転していたアノード変調器のうち、未改修分15台を改修して放電対策を施した。エネルギー増強対応として、震災により中断していた972MHzテストスタンドの再立上げ、HVDCPS#10とACS#16ステーション、HVDCPS#11とACS#17ステーションの立上げを行った。エネルギー増強対応の機器については、972MHzテストスタンドを6月18日に運転再開し、ACS#16, #17の両ステーションも近日運転を再開する予定である。

論文

J-PARCリニアックRFチョッパ用の高周波源システムの改造

二ツ川 健太*; 池上 雅紀*; 伊藤 雄一; 菊澤 信宏; 佐藤 文明; 篠崎 信一; 鈴木 隆洋*; 千代 悦司; 平野 耕一郎; Fang, Z.*; et al.

Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.1149 - 1153, 2014/06

J-PARCリニアックでは、MEBT部に2つの空胴で構成されたRFチョッパを導入し、不要なビームをRFで蹴り出すことにより櫛形構造を持つ中間パルスを生成して、RCSへ入射している。RFチョッパの高周波の立上り・立下り時の過渡領域のビームは、半端に蹴り 出されるために下流でのビーム損失の原因となり得る。そこで、RFチョッパには、素早い応答性が要求され、Q値の低い空胴と帯域の広い半導体アンプが採用されている。しかし、以前のシステムでは2つのチョッパ空胴をU字型の同軸管で直列に接続し、1つの高周波源で運用していたこともあり、高周波の立下り時に大きなリンギングが見られた。そこで、2012年の夏季シャットダウン中に、新たに半導体アンプを追加し高周波源を2台体制にして、各空胴を独立にドライブするシステムに改造した。その結果、立下り時のリンギングは小さくなり、ビーム電流15mAの条件下で立上り・立下り時間が約20nsecを達成した。現在は、半導体アンプが故障したために、以前の直列接続のシステムに戻っているが、本講演では2台体制の並列接続システムの成果について発表を行う。

論文

J-PARCリニアック制御信号分配システムの改修

二ツ川 健太*; 伊藤 雄一; 菊澤 信宏; 小林 鉄也*; 佐藤 文明; 篠崎 信一; 鈴木 隆洋*; Fang, Z.*; 福井 佑治*; 道園 真一郎*

Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.1126 - 1129, 2014/06

J-PARC加速器全体のタイミングシステムとして、12MHzクロック, 50Hzトリガ, タイプコードと呼ばれる制御ワード信号の3種類の信号が使用されている。それらの信号は、中央制御室で生成され、光信号で各加速器施設に分配される。リニアックでも、地上部のクライストロンギャラリの上流部で各信号を受け取り、そこで分岐され、各ステーションに分配される。ただし、ここでの分岐・分配システムは、光信号をO/Eモジュールで受信して電気信号に変換し、FANOUTモジュールを使用して電気的に分岐、それの信号をE/Oモジュールで再度光信号に変換して各ステーションに分配するという非効率的な構成となっていた。ここでは、多大なモジュール数を必要としたために度々の故障事例があり、隣には温度に敏感なLLRFのラックが納入されていたこともあり排熱などが問題になった。そこで、2013年の夏季シャットダウン中に光アンプと光カプラを使用したシステムを導入する予定である。この導入によりシンプルなシステム構成となり、トラブル数を低減できると期待できる。

論文

Progress of beam commissioning and beam loss mitigation in the J-PARC linac after the Tohoku earthquake

丸田 朋史; 三浦 昭彦; 佐甲 博之; 田村 潤; 池上 雅紀*; 二ツ川 健太*; Fang, Z.*; 宮尾 智章*; Liu, Y.*

Journal of the Korean Physical Society, 63(7), p.1274 - 1279, 2013/10

 パーセンタイル:100(Physics, Multidisciplinary)

The Tohoku earthquake in March 2011 caused a significant damage to the J-PARC linac and forced us to shutdown the accelerator for nearly nine month. After significant effort for its restoration, we have resumed the beam operation of the J-PARC linac in December 2011. After the resumption of beam operation, we have been suffering from beam losses which were not observed before the earthquake. Tackling with the beam loss issues, we have been reached the same beam power for user operation as before the earthquake. In this paper, we present the experience in the beam start-up tuning after the earthquake with emphasis on the beam loss mitigation efforts.

論文

J-PARCリニアックRFQ2号機大電力試験用テストスタンド

堀 利彦; 千代 悦司; 篠崎 信一; 佐藤 文明; 森下 卓俊; 近藤 恭弘; 二ツ川 健太*; 福井 佑治*; 川村 真人*; 杉村 高志*; et al.

Proceedings of 9th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.1240 - 1242, 2013/08

J-PARCリニアックの運転当初から使用しているRFQは、2008年に放電が頻発し大出力ビームを長時間安定に加速することが困難な状況となったため、そのバックアップ機としてRFQ2号機を製作するに至った。RFQ2号機は2011年3月に製作を終え、早い時期に大電力試験を行う予定であったが、同年3月11日に発生した東日本大震災の影響で、試験スケジュールは白紙の状況となった。震災後の高周波源グループは機器の復旧とビーム運転の再開を最優先課題としたが、この大電力試験を早期に行えるよう本テストスタンドの整備を2012年1月より本格的に開始した。ハード機器の整備、低電力システムの構築、高圧電源の試運転、クライストロンから空洞までの導波管接続などの作業を4月下旬には完了した。空洞サイドからの主な要求としては、パルス繰り返し数: 50pps、RFパルス幅: 600$$mu$$s(連続可変)、最大供給電力: 400kWなどであったが、5月下旬までの実稼働日数で19日間、高圧印加時間で約150時間の大電力試験を大きなトラブルなく消化した。

論文

敷設ケーブルの高周波電力損失の高精度測定

二ツ川 健太*; 穴見 昌三*; 小林 鉄也*; Fang, Z.*; 福井 佑治*; 道園 真一郎*; 佐藤 文明; 篠崎 信一

Proceedings of 9th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.765 - 768, 2013/08

ほぼすべての加速器施設で、加速空洞内の電場や大電力高周波の伝送系、またビームの状態などのモニタ用として、高周波ケーブルを使用している。これらの敷設されたケーブルにおいては、運転前に高周波特性を把握しておくことが、必要不可欠である。一般的には、ケーブル内での高周波電力損失は、ネットワークアナライザを使用して、透過電力$$S$$$$_{21}$$を測定する手法で求められる。放射線防護の観点から、空洞がある加速器トンネルとその制御システムは、離れた場所に設置される。この場合は、この間に敷設されたケーブルの透過電力を測定するためには、この間を渡って校正されたケーブルが必要になり容易ではない。そこで、ケーブル内での高周波電力損失の測定手法として、反射を利用する方法を紹介する。この手法では、ケーブル末端での反射波の位相を回転させることによって、ケーブルの途中での反射と末端での反射を区別する。この測定は、従来のパワーメータと信号発振器を用いた方法より、容易であり、かつ高精度である。また、高周波電力損失という基礎情報の測定であるとともに、どの加速器でも使用する機器・道具しか使用していないため、応用範囲が広いと考えている。J-PARCリニアックに新しく敷設するACS用ケーブルの測定でもこの手法を採用する予定である。

論文

J-PARCリニアックLLRFの東日本大地震からの再スタート

二ツ川 健太*; 穴見 昌三*; 小林 鉄也*; Fang, Z.*; 福井 佑治*; 道園 真一郎*; 川村 真人*; 佐藤 文明; 篠崎 信一; 千代 悦司; et al.

Proceedings of 9th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.769 - 773, 2013/08

2011年3月11日に発生した東日本大地震によって、J-PARCリニアックは、建屋,ユーティリティー設備,装置等に甚大な被害が生じた。高周波(RF)制御システムも立体回路の変形に伴い、2つの加速空洞に伝送しているRFの位相差を測定し、再調整を行った。また、各基準信号の伝送,制御機器,増幅機器の動作チェックを行い、2011年の末にビーム試験を迎えることができた。しかし、SDTL05の空洞が、震災で大気に晒されて空洞内の状態が悪化したこともあり、運転で使用するパワー領域で高周波が不安定になり、この領域での使用が困難になった。現在は、設計値より、高いパワー領域で運転している。その際に、高周波の波形を解析した結果、SDTL06にも相似た現象が確認できるが、SDTL07を境に大きく傾向が異なることがわかった。その結果、自由発振のときの波形から共振周波数を算出して、制御している自動チューナの設定値を最適化した。また、平成24年度に高圧のトラブルがあり、タイミングの関係でマクロパルスの途中でサグの傾きが変わるような設定になったが、現在はフィードバック制御により、空洞内の電場は一定に保たれている。本発表では、震災の復旧作業から夏季シャットダウンまでの運転対応について報告する。

論文

Beam commissioning of J-PARC linac after Tohoku Earthquake and its beam loss mitigation

池上 雅紀*; Fang, Z.*; 二ツ川 健太*; 宮尾 智章*; Liu, Y.*; 丸田 朋史; 佐甲 博之; 三浦 昭彦; 田村 潤; Wei, G.

Proceedings of 9th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.64 - 67, 2013/08

The beam operation of J-PARC linac was interrupted by the Tohoku earthquake in March 2011. After significant effort for its restoration, we have resumed the beam operation of J-PARC linac in December 2011. After resumption of beam operation, we have been suffering from beam losses which were not observed before the earthquake. Tackling with the beam loss issues, we have been reached the same beam power for user operation as before the earthquake. In this paper, we present the experience in the beam start-up tuning after the earthquake with emphasis on the beam loss mitigation efforts.

論文

J-PARC LINAC RFQテストステーションのRF制御システム

福井 佑治*; 川村 真人*; 小林 鉄也*; Fang, Z.*; 二ツ川 健太*; 佐藤 文明; 篠崎 信一; 鈴木 浩幸; 千代 悦司; 堀 利彦; et al.

Proceedings of 9th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.762 - 764, 2013/08

J-PARCリニアックでは、RFQ(高周波4重極ライナック)を使用してイオン源からの負水素イオンビームを加速し、DTLへ入射している。このRFQでは過去、ビーム運転中にトリップが頻発するなどして安定性が低下する事象が発生した。そこで現行のRFQのバックアップ機として新たにRFQ2号機が製作された。このRFQ2号機のハイパワーテストを行う目的で、2011年7月よりRFQテストステーション制御系の構築が始まり、2012年4月下旬からは空洞へのRF投入が開始された。RFQテストステーションは低電力高周波(LLRF)制御,RF立体回路,324MHzクライストロンやこれを駆動する高圧電源,冷却水系などで構成されており、このうちLLRF制御やクライストロン電源制御ではPLC(Programmable Logic Controller)を使用してRFの制御や運転データの収集などを行っている。本稿ではRFQテストステーションのRF制御システムについて報告を行う。

論文

J-PARCリニアック用クライストロン電源システムの現状2012; 震災復旧、高圧直流電源故障、エネルギー増強

川村 真人*; 千代 悦司; 堀 利彦; 篠崎 信一; 佐藤 文明; 福井 佑治*; 二ツ川 健太*; 山崎 正義*; 佐川 隆*; 雪竹 光輝*; et al.

Proceedings of 9th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.1243 - 1247, 2013/08

過去1年間のJ-PARCリニアック用クライストロン電源システムの運転状況について、東日本大震災による被災からの復旧、長期に渡る加速器運転停止を招いた高圧直流電源の故障を中心に述べる。また、エネルギー増強に向けた作業の状況を報告する。震災後、本電源システムは2011年10月中旬に試運転、11月上旬に181MeV用全機器の終夜連続運転の再開を果たし、2012年5月末までの当電源システムのHVオン時間は4,900時間である。2012年3月下旬、高圧直流電源(HVDCPS)1号機の変圧整流器が故障した。絶縁油タンクを開けて内部を確認した結果、整流用ダイオードスタックの破損が見られたので予備品と交換し、試運転を行ったところ再度故障し、別のダイオードスタックが破損した。結局当該変圧整流器は破棄し、代わりに予備機器を設置して運転を再開した。この影響で当電源システムは11日間停止、リニアックのビーム加速は15日間中断、ユーザーへの供給運転は18日間中断となった。

30 件中 1件目~20件目を表示