Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Futemma, Akira; Sanada, Yukihisa; Nakama, Shigeo; Sasaki, Miyuki; Ochi, Kotaro; Sawahata, Yoshiro*; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; et al.
JAEA-Technology 2024-022, 170 Pages, 2025/03
On March 11, 2011, the 2011 off the Pacific coast of Tohoku Earthquake caused a tsunami that led to the Fukushima Daiichi Nuclear Power Station accident, releasing radioactive material into the environment. Since then, Aerial Radiation Monitoring (ARM) using manned helicopters has been employed to measure radiation distribution. As a commissioned project from the Nuclear Regulation Authority, the Japan Atomic Energy Agency (JAEA) utilizes this technology for emergency monitoring during nuclear facility accidents, aiming to provide prompt results by pre-arranging information on background radiation, topography, and control airspaces around nuclear power plants nationwide. In fiscal year 2023, the commissioned project included conducting ARM around the Sendai Nuclear Power Station and preparing related information. To enhance effectiveness during emergencies, ARM and the first domestic training flight of Unmanned Aerial Vehicles (UAVs) were conducted during the FY2023 Nuclear Energy Disaster Prevention Drill. Furthermore, UAVs radiation monitoring technology was advanced by selecting UAVs and investigating their performance. This report summarizes the results and technical issues identified providing insights to improve emergency preparedness.
Futemma, Akira; Sanada, Yukihisa; Nakama, Shigeo; Sasaki, Miyuki; Ochi, Kotaro; Nagakubo, Azusa; Sawahata, Yoshiro*; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; et al.
JAEA-Technology 2024-021, 232 Pages, 2025/03
The 2011 off the Pacific coast of Tohoku Earthquake on March 11, 2011, caused a tsunami that led to the TEPCO's Fukushima Daiichi Nuclear Power Station (FDNPS) accident, releasing a large amount of radioactive material into the surrounding environment. Since the accident, Aerial Radiation Monitoring (ARM) has been used to quickly and widely measure radiation distribution. As a commissioned project from the Nuclear Regulation Authority, the Japan Atomic Energy Agency (JAEA) has continuously conducted ARM around FDNPS using manned and unmanned helicopters. This report summarizes the monitoring results for fiscal year 2023, evaluates changes in dose rate from past results, and discusses the factors contributing to these changes. Additionally, an analysis considering terrain undulation was conducted to improve accuracy for converting ARM data into dose rate. Furthermore, a method to discriminate airborne radon progeny was applied for ARM results to evaluate its impact. Moreover, to perform wide-area monitoring more efficiently, we advanced the development of unmanned airplane monitoring technology.
Sanada, Yukihisa; Tokiyoshi, Masanori*; Nishiyama, Kyohei*; Sato, Rina; Yoshimura, Kazuya; Funaki, Hironori; Abe, Tomohisa; Ishida, Mutsushi*; Nagamine, Haruo*; Fujisaka, Motoyuki*
Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 22(2), p.87 - 96, 2023/04
Since the accident at the Fukushima Daiichi Nuclear Power Plant, many decontamination works have been carried out, but it is difficult to say that much data on workers' exposure has necessarily been analyzed in detail. In this paper, based on the GPS location information carried by the workers together with their personal dosimeters, the air dose rate in the work area and the characteristics of each type of work were analyzed. The results showed that more than 50% of the measured actual doses were more than twice the median planned dose calculated from the air dose rate and actual working hours. Furthermore, as a result of the analysis by work type, it was found that the exposure doses of demolition workers tended to be high, and that this was due to the fact that most of the work was carried out before the work was carried out to reduce the dose at the work site. In addition, when the conversion from air dose to effective dose was taken into account, there were many cases of underestimation where the planned values were lower than the measured values, and it is considered important for management to set appropriate working factor.
Sanada, Yukihisa; Ishida, Mutsushi*; Yoshimura, Kazuya; Mikami, Satoshi
Journal of Radiation Protection and Research, 46(4), p.184 - 193, 2021/12
no abstracts in English
Sanada, Yukihisa; Kurikami, Hiroshi; Funaki, Hironori; Yoshimura, Kazuya; Abe, Tomohisa; Ishida, Mutsushi*; Tanimori, Soichiro*; Sato, Rina
Nihon Genshiryoku Gakkai Wabun Rombunshi, 20(2), p.62 - 73, 2021/06
Japanese government starts to consider radiation protection in the "specific reconstruction reproduction base area" of which evacuation order will be lifted by 2023. It is essential to grab the present situations of radiation contamination and evaluate exposure dose in the area to realize the plan. Many surveys have evaluated the distributions of air dose rate and exposure dose has been estimated based on the results since the Fukushima Daiichi Nuclear Power Plant accident. Nevertheless, more detailed information on exposure is needed for the areas because its radiation level is relatively high. That is also to help make prudent evaluation plan. This study aimed to evaluate the detailed contamination situation there and estimate exposure dose with considering areal circumstances. Investigations were carried out for (1) airborne survey of air dose rate using an unmanned helicopter (2) evaluation of airborne radiocesium and (3) estimation of external/internal effective doses for typical activity patterns assumed.
Ochi, Kotaro; Sasaki, Miyuki; Ishida, Mutsushi*; Sanada, Yukihisa
Progress in Nuclear Science and Technology (Internet), 6, p.103 - 107, 2019/01
After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, a large amount of radionuclides was spread out all over the world. In our previous study, we developed the aerial radiation monitoring technique using unmanned helicopter for investigating the dose rate derived deposited radionuclides over wide area. In addition, many monitoring techniques were developed for investigating the local distribution of radionuclides using unmanned aerial vehicle, handheld instrument and car within small area. Distinction of these methods depends on desirable position resolution of dose rate. However, the comparison method of the measurement result between different methods is not established. In this study, we attempted to evaluate the some methods of airborne and ground radiation measurement in same extended farm.
Azami, Kazuhiro*; Otagaki, Takahiro*; Ishida, Mutsushi; Sanada, Yukihisa
Landscape and Ecological Engineering, 14(1), p.3 - 15, 2018/01
Times Cited Count:2 Percentile:10.32(Biodiversity Conservation)Ishizaki, Azusa; Sanada, Yukihisa; Ishida, Mutsushi; Munakata, Masahiro
Journal of Environmental Radioactivity, 180, p.82 - 89, 2017/12
Times Cited Count:7 Percentile:21.03(Environmental Sciences)After the Fukushima Daiichi Nuclear Power Station (FDNPS) accident in 2011, aerial radiation monitoring (ARM) using a manned helicopter was conducted to rapidly measure air dose rates and the deposition of radioactive nuclides over a large area. Typically, the air dose rate is obtained by conversion from the count rate using the conventional flat source model (FSM). The converted dose rate via aerial monitoring poorly matches the results of ground measurement in the mountain and forest areas because the FSM does not consider topographical effects. To improve the conversion accuracy, we developed new methods to analyze aerial monitoring data using the topographical source model (TSM) based on the analytical calculation of the -ray flux. The ARM results converted using both the FSM as well as TSM were compared with ground measurement data obtained after the FDNPS accident. By using TSM, the conversion accuracy was improved.
Ochi, Kotaro; Sasaki, Miyuki; Ishida, Mutsushi*; Hamamoto, Shoichiro*; Nishimura, Taku*; Sanada, Yukihisa
International Journal of Environmental Research and Public Health, 14(8), p.926_1 - 926_14, 2017/08
Times Cited Count:5 Percentile:24.74(Environmental Sciences)After the Fukushima Daiichi Nuclear Power Plant accident, the vertical distribution of radiocesium in soil has been investigated to better understand the behavior of radiocesium in the environment. The typical method used for measuring the vertical distribution of radiocesium is troublesome because it requires collection and measurement of the activity of soil samples. In this study, we established a method of estimating the vertical distribution of radiocesium by focusing on the characteristics of -ray spectra obtained via aerial radiation monitoring using an unmanned helicopter. In this method, the change in the ratio of direct
rays to scattered
rays at various depths in the soil was utilized to quantify the vertical distribution of radiocesium. The results show a positive correlation between the abovementioned and the actual vertical distributions of radiocesium measured in the soil samples.
Ishizaki, Azusa; Sanada, Yukihisa; Mori, Airi; Imura, Mitsuo; Ishida, Mutsushi; Munakata, Masahiro
Remote Sensing, 8(11), p.892_1 - 892_12, 2016/11
Times Cited Count:6 Percentile:25.43(Environmental Sciences)In aerial radiation monitoring (ARM), the air dose rate cannot be appropriately estimated under snowy conditions due to attenuation of ray by the snow layer. A technique to address this issue is required for ARM to obtain enough signals for air dose rate. To develop this technique, we investigated the relationship between snow depth and ARM measurement results using ARM, laser imaging detection and ranging, and ground measurement before and after snowfall. From the measured data, the results obtained using three different correction factors were examined and compared. An appropriate correction improved the underestimation of the air dose rate. However, further improvement in the accuracy of the analysis require accurate estimation of the snow water equivalent.
Sanada, Yukihisa; Munakata, Masahiro; Mori, Airi; Ishizaki, Azusa; Shimada, Kazumasa; Hirouchi, Jun; Nishizawa, Yukiyasu; Urabe, Yoshimi; Nakanishi, Chika*; Yamada, Tsutomu*; et al.
JAEA-Research 2016-016, 131 Pages, 2016/10
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. In addition, background dose rate monitoring was conducted around Sendai Nuclear Power Station. These results of the aerial radiation monitoring using the manned helicopter in the fiscal 2015 were summarized in the report.
Sanada, Yukihisa; Mori, Airi; Ishizaki, Azusa; Munakata, Masahiro; Nakayama, Shinichi; Nishizawa, Yukiyasu; Urabe, Yoshimi; Nakanishi, Chika; Yamada, Tsutomu; Ishida, Mutsushi; et al.
JAEA-Research 2015-006, 81 Pages, 2015/07
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (NPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPP. These results of the aerial radiation monitoring using the manned helicopter in the fiscal 2014 were summarized in the report.
Sanada, Yukihisa; Nishizawa, Yukiyasu; Urabe, Yoshimi; Yamada, Tsutomu; Ishida, Mutsushi; Sato, Yoshiharu; Hirayama, Hirokatsu; Takamura, Yoshihide; Nishihara, Katsuya; Imura, Mitsuo; et al.
JAEA-Research 2014-012, 110 Pages, 2014/08
By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (NPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPP. This document was summarized in the results of the aerial radiation monitoring using the manned helicopter in the fiscal 2013.
Sanada, Yukihisa; Takamura, Yoshihide; Urabe, Yoshimi; Tsuchida, Kiyofumi; Nishizawa, Yukiyasu; Yamada, Tsutomu; Sato, Yoshiharu; Hirayama, Hirokatsu; Nishihara, Katsuya; Imura, Mitsuo; et al.
JAEA-Research 2014-005, 67 Pages, 2014/05
Distribution of radiocesium existing on the waterbed such as lake or pond was concerned about at the present that passed for two years by an accident. Here, the direct measurement technique of the radiocesium concentration (in-situ measurement technique) was developed. This method was used an plastic scintillation detector (p-Scanner). This detector carried out quick measurement of a large area. In addition, the count-rate of p-Scanner was converted to the radiocesium concentration (Ba/kg-wet) by comparative measurement of -ray spectrometer. We applied the technique to the agricultural pond in Fukushima and made a map of distribution of radiocesium concentration.
Sanada, Yukihisa; Nishizawa, Yukiyasu; Yamada, Tsutomu; Ikeda, Kazutaka*; Matsui, Masashi*; Tsuchida, Kiyofumi; Sato, Yoshiharu; Hirayama, Hirokatsu; Takamura, Yoshihide; Nishihara, Katsuya; et al.
JAEA-Research 2013-049, 129 Pages, 2014/03
By the nuclear disaster of Fukushima Daiichi Nuclear Power Plant (NPP), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPP. In recent years, technologies for autonomous unmanned helicopters (AUHs) have been developed and applied to natural disasters. In expectation of the application of the AUHs to aerial radiation monitoring, we had developed a remote radiation monitoring system. Then, we measured the radiation level by using unmanned helicopter in soil contaminated areas by radioactive cesium emitted from the NPP to evaluate ambient dose-rate distribution around the areas and to investigate the decontamination effect by the measurements before and after decontamination treatment. Here, we reports on the measurement technique and the result.
Torii, Tatsuo; Sanada, Yukihisa; Sugita, Takeshi; Kondo, Atsuya*; Shikaze, Yoshiaki; Takahashi, Masaki; Ishida, Mutsushi; Nishizawa, Yukiyasu; Urabe, Yoshimi
JAEA-Technology 2012-036, 182 Pages, 2012/12
We carried out aerial radiation monitoring (ARM) of all Japan area in order to investigate the influence of the radio cesium which was emitted into the atmosphere by disaster of the Fukushima Dai-ichi Nuclear Power Plant of Tokyo Electric Power Co., Inc.. AMS can measure a ray quickly by flight from 300 m height above the ground. Moreover, ARM has an advantage which can grasp self-possessed quantity distribution of an air dose rate and radioactive cesium in "field", and is visually intelligible. Although there were apparatus and the technique of ARM in our country, sufficient preparations for wide area monitoring were not made. Therefore, it fixed based on the method of the U.S. Department of Energy (DOE) about the method of the conversion to all radiation dose, and the conversion method to radiocesium deposition and the method of mapping. It is possible to discriminate from a background (cosmic-ray, self-contamination and natural nuclides) at the time of western-part-of-Japan measurement by improving of the method in parallel to data acquisition. By this monitoring, it was able to check about the distribution situation of the air dose rate of the Japanese whole region, or the radioactive cesium deposition. Here, the measurement technique and a result are described.
Abe, Tomohisa; Sanada, Yukihisa; Tokiyoshi, Masanori*; Nishiyama, Kyohei*; Sato, Rina*; Yoshimura, Kazuya; Funaki, Hironori; Ishida, Mutsushi*; Nagamine, Haruo*; Fujisaka, Motoyuki*
no journal, ,
We attempted to analyze in detail the actual external exposure doses of workers involved in decontamination work, which had been difficult to analyze in detail until now, by recording location information and exposure doses using GPS. As a result, it was found that more than 50% of the planned exposure dose calculated from the air dose rate and the number of actual working hours were more than twice the median the measured exposure doses. Furthermore, analysis by work type showed that the exposure doses of demolition workers tended to be higher. This information on the external exposure dose of workers linked to location information is useful for detailed analysis of external exposure factors and will contribute to the optimization of future radiation protection programs for workers.
Nishizawa, Yukiyasu; Ishida, Mutsushi; Ikeda, Kazutaka*; Sanada, Yukihisa; Torii, Tatsuo
no journal, ,
no abstracts in English
Sanada, Yukihisa; Sato, Yoshiharu; Hirayama, Hirokatsu; Ishida, Mutsushi; Torii, Tatsuo
no journal, ,
no abstracts in English
Nishihara, Katsuya; Hirayama, Hirokatsu; Ishida, Mutsushi; Sanada, Yukihisa; Torii, Tatsuo
no journal, ,
no abstracts in English