Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 100

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Level structures of $$^{56,58}$$Ca cast doubt on a doubly magic $$^{60}$$Ca

Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.

Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08

Gamma decays were observed in $$^{56}$$Ca and $$^{58}$$Ca following quasi-free one-proton knockout reactions from $$^{57,59}$$Sc. For $$^{56}$$Ca, a $$gamma$$ ray transition was measured to be 1456(12) keV, while for $$^{58}$$Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the $$2^{+}_{1} rightarrow 0^{+}_{gs}$$ decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for $$2^{+}_{1}$$ level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the $$0_{f5/2}$$ and $$0_{g9/2}$$ orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic $$^{60}$$Ca and potentially drives the dripline of Ca isotopes to $$^{70}$$Ca or even beyond.

Journal Articles

"Southwestern" boundary of the $$N = 40$$ island of inversion; First study of low-lying bound excited states in $$^{59}$$V and $$^{61}$$V

Elekes, Z.*; Juh$'a$sz, M. M.*; Sohler, D.*; Sieja, K.*; Yoshida, Kazuki; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Achouri, N. L.*; Baba, Hidetada*; et al.

Physical Review C, 106(6), p.064321_1 - 064321_10, 2022/12

 Times Cited Count:0 Percentile:0.02(Physics, Nuclear)

The low-lying level structure of $$^{59}$$V and $$^{61}$$V was investigated for the first time. The neutron knockout reaction and inelastic proton scattering were applied for $$^{61}$$V while the neutron knock-out reaction provided the data for $$^{59}$$V. Four and five new transitions were determined for $$^{59}$$V and $$^{61}$$V, respectively. Based on the comparison to our shell-model calculations using the Lenzi-Nowacki-Poves-Sieja (LNPS) interaction, three of the observed $$gamma$$ rays for each isotope could be placed in the level scheme and assigned to the decay of the first 11/2$$^{-}$$ and 9/2$$^{-}$$ levels. The ($$p$$,$$p'$$) excitation cross sections for $$^{61}$$V were analyzed by the coupled-channels formalism assuming quadrupole plus hexadecapole deformations. Due to the role of the hexadecapole deformation, $$^{61}$$V could not be unambiguously placed on the island of inversion.

Journal Articles

A First glimpse at the shell structure beyond $$^{54}$$Ca; Spectroscopy of $$^{55}$$K, $$^{55}$$Ca, and $$^{57}$$Ca

Koiwai, Takuma*; Wimmer, K.*; Doornenbal, P.*; Obertelli, A.*; Barbieri, C.*; Duguet, T.*; Holt, J. D.*; Miyagi, Takayuki*; Navr$'a$til, P.*; Ogata, Kazuyuki*; et al.

Physics Letters B, 827, p.136953_1 - 136953_7, 2022/04

 Times Cited Count:2 Percentile:55.85(Astronomy & Astrophysics)

no abstracts in English

Journal Articles

Pairing forces govern population of doubly magic $$^{54}$$Ca from direct reactions

Browne, F.*; Chen, S.*; Doornenbal, P.*; Obertelli, A.*; Ogata, Kazuyuki*; Utsuno, Yutaka; Yoshida, Kazuki; Achouri, N. L.*; Baba, Hidetada*; Calvet, D.*; et al.

Physical Review Letters, 126(25), p.252501_1 - 252501_7, 2021/06

 Times Cited Count:8 Percentile:71.69(Physics, Multidisciplinary)

Direct proton-knockout reactions of $$^{55}$$Sc were studied at the RIKEN Radioactive Isotope Beam Factory. Populated states of $$^{54}$$Ca were investigated through $$gamma$$-ray and invariant-mass spectroscopy. Level energies were calculated from the nuclear shell model employing a phenomenological inter-nucleon interaction. Theoretical cross sections to states were calculated from distorted-wave impulse approximation estimates multiplied by the shell model spectroscopic factors. Despite the calculations showing a significant amplitude of excited neutron configurations in the ground-state of $$^{55}$$Sc, valence proton removals populated predominantly the ground-state of $$^{54}$$Ca. This counter-intuitive result is attributed to pairing effects leading to a dominance of the ground-state spectroscopic factor. Owing to the ubiquity of the pairing interaction, this argument should be generally applicable to direct knockout reactions from odd-even to even-even nuclei.

Journal Articles

First spectroscopic study of $$^{51}$$Ar by the ($$p$$,2$$p$$) reaction

Juh$'a$sz, M. M.*; Elekes, Z.*; Sohler, D.*; Utsuno, Yutaka; Yoshida, Kazuki; Otsuka, Takaharu*; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Baba, Hidetada*; et al.

Physics Letters B, 814, p.136108_1 - 136108_8, 2021/03

AA2020-0747.pdf:0.83MB

 Times Cited Count:3 Percentile:49.55(Astronomy & Astrophysics)

The nuclear structure of $$^{51}$$Ar was studied by the ($$p$$,2$$p$$) reaction using $$gamma$$-ray spectroscopy for the bound and unbound states. Comparing the results to our shell-model calculations, two bound and six unbound states were established. The low cross sections populating the two bound states of $$^{51}$$Ar could be interpreted as a clear signature for the presence of significant sub-shell closures at neutron numbers 32 and 34 in argon isotopes.

Journal Articles

$$N$$ = 32 shell closure below calcium; Low-lying structure of $$^{50}$$Ar

Cort$'e$s, M. L.*; Rodriguez, W.*; Doornenbal, P.*; Obertelli, A.*; Holt, J. D.*; Men$'e$ndez, J.*; Ogata, Kazuyuki*; Schwenk, A.*; Shimizu, Noritaka*; Simonis, J.*; et al.

Physical Review C, 102(6), p.064320_1 - 064320_9, 2020/12

AA2020-0748.pdf:0.75MB

 Times Cited Count:9 Percentile:75.08(Physics, Nuclear)

Low-lying excited states in the $$N$$ = 32 isotope $$^{50}$$Ar were investigated by in-beam $$gamma$$-ray spectroscopy following proton- and neutron-knockout, multinucleon removal, and proton inelastic scattering at the RIKEN Radioactive Isotope Beam Factory. The energies of the two previously reported transitions have been confirmed, and five additional states are presented for the first time, including a candidate for a 3$$^{-}$$ state. The level scheme built using $$gamma$$ $$gamma$$ coincidences was compared to shell-model calculations in the $$sd-pf$$ model space and to ${it ab initio}$ predictions based on chiral two- and three-nucleon interactions. Theoretical proton- and neutron-knockout cross sections suggest that two of the new transitions correspond to 2$$^{+}$$ states, while the previously proposed 4$$^{+}_{1}$$ state could also correspond to a 2$$^{+}$$ state.

Journal Articles

Technology demonstration of sampling from reactor core structure of FUGEN Decommissioning Engineering Center

Iwai, Hiroki; Soejima, Goro; Takiya, Hiroaki; Awatani, Yuto; Aratani, Kenta; Miyamoto, Yuta; Tezuka, Masashi

Dekomisshoningu Giho, (61), p.12 - 19, 2020/03

FUGEN Decommissioning Engineering Center received the approval of the decommissioning plan in 2008, and we have been progressing the decommissioning. The first phase of decommissioning (Heavy Water and Other System Decontamination Period) finished in March 2018, and FUGEN has entered into the second phase of decommissioning (Reactor Periphery Facilities Dismantling Period). This report outlines the technology demonstration of sampling from reactor core structure of FUGEN that to prepare for reactor dismantlement in the third phase.

Journal Articles

Shell evolution of $$N$$ = 40 isotones towards $$^{60}$$Ca; First spectroscopy of $$^{62}$$Ti

Cort$'e$s, M. L.*; Rodriguez, W.*; Doornenbal, P.*; Obertelli, A.*; Holt, J. D.*; Lenzi, S. M.*; Men$'e$ndez, J.*; Nowacki, F.*; Ogata, Kazuyuki*; Poves, A.*; et al.

Physics Letters B, 800, p.135071_1 - 135071_7, 2020/01

 Times Cited Count:28 Percentile:96.53(Astronomy & Astrophysics)

Excited states in the $$N$$ = 40 isotone $$^{62}$$Ti were populated via the $$^{63}$$V($$p$$,$$2p$$)$$^{62}$$Ti reaction at $$sim$$200 MeV/nucleon at the Radioactive Isotope Beam Factory and studied using $$gamma$$-ray spectroscopy. The energies of the $$2_1^+ rightarrow 0_{rm gs}^+$$ and $$4_1^+ rightarrow 2_1^+$$ transitions, observed here for the first time, indicate a deformed Ti ground state. These energies are increased compared to the neighboring $$^{64}$$Cr and $$^{66}$$Fe isotones, suggesting a small decrease of quadrupole collectivity. The present measurement is well reproduced by large-scale shell-model calculations based on effective interactions, while ab initio and beyond mean-field calculations do not yet reproduce our findings.

Journal Articles

Implementation of underwater laser cutting in the large water tank in Fukui smart decommissioning technology demonstration base

Miyamoto, Yuta; Iwai, Hiroki; Yoshikawa, Katsuhiro*

Wakasawan Enerugi Kenkyu Senta Homu Peji (Internet), 1 Pages, 2020/00

no abstracts in English

Journal Articles

Quasifree neutron knockout from $$^{54}$$Ca corroborates arising $$N=34$$ neutron magic number

Chen, S.*; Lee, J.*; Doornenbal, P.*; Obertelli, A.*; Barbieri, C.*; Chazono, Yoshiki*; Navr$'a$til, P.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Raimondi, F.*; et al.

Physical Review Letters, 123(14), p.142501_1 - 142501_7, 2019/10

AA2019-0306.pdf:0.57MB

 Times Cited Count:41 Percentile:93.13(Physics, Multidisciplinary)

no abstracts in English

Journal Articles

Laser cutting underwater is carried out in the Fukui Smart Decommissioning Technology Demonstration Base

Soejima, Goro; Iwai, Hiroki; Nakamura, Yasuyuki; Kuwamuro, Naotoshi*; Shimazu, Tadashi*

Eneken Nyusu (Internet), 131, P. 1, 2019/04

We investigated the behavior of the dust generated by Laser cutting underwater aimed at the simulant material of reactor components (SUS304) and the pressure and calandria tube (Zr-2.5%Nb, Zry-2) of the prototype reactor. This test was carried out in the water tank as large as the reactor of FUGEN.

Journal Articles

Investigation for dust behavior of cutting in air and cutting underwater by thermal cutting methods

Soejima, Goro; Iwai, Hiroki; Nakamura, Yasuyuki; Tsuzuki, Satoshi*; Yasunaga, Kazushi*; Kume, Kyo*

Heisei-29-Nendo Koeki Zaidan Hojin Wakasawan Enerugi Kenkyu Senta kenkyu Nempo, 20, P. 80, 2018/11

We investigated the behavior of the dust generated by Laser and Plasma-arc cutting underwater and in air aimed at the simulant material of reactor components (SUS304) and the pressure and calandria tube (Zr-2.5%Nb, Zry-2) of the prototype reactor "FUGEN".

Journal Articles

Study of the dust behavior on the laser and plasma cutting

Soejima, Goro; Iwai, Hiroki; Kadowaki, Haruhiko; Nakamura, Yasuyuki; Tsuzuki, Satoshi*; Yasunaga, Kazushi*; Nakata, Yoshinori*; Kume, Kyo*

Heisei-28-Nendo Koeki Zaidan Hojin Wakasawan Enerugi Kenkyu Senta kenkyu Nempo, 19, P. 9, 2017/10

no abstracts in English

Journal Articles

Technology development on reactor dismantling and investigation of contamination in FUGEN

Soejima, Goro; Iwai, Hiroki; Nakamura, Yasuyuki; Hayashi, Hirokazu; Kadowaki, Haruhiko; Mizui, Hiroyuki; Sano, Kazuya

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 5 Pages, 2017/07

no abstracts in English

JAEA Reports

Applicability test of abrasive water jet cutting technology for dismantling of the core internals of Fukushima Daiichi NPS

Nakamura, Yasuyuki; Iwai, Hiroki; Tezuka, Masashi; Sano, Kazuya

JAEA-Technology 2015-055, 89 Pages, 2016/03

JAEA-Technology-2015-055.pdf:17.54MB

It was reported that Fukushima Daiichi Nuclear Power Station (1F) had lost the cooling function of the reactor by the Tohoku Earthquake. It is assumed that the core internals became narrow and complicated debris structure mixed with the molten fuel. In consideration of the above situations, the AWJ cutting method, which has features of the long work distance and little heat effect for a material, has been developed for the removal of the molten core internals through cutting tests for 3 years since FY 2012. And it was confirmed that AWJ cutting method is useful for the removal of the core internals etc. The results in FY 2012 were reported in "R&D of the fuel debris removal technologies by abrasive water jet cutting technology (JAEA-Technology 2013-041)" and this report summarizes the results of FY 2012, 2013 and 2014 in this report. It was confirmed the possibility to apply the removal work of the fuel debris and the core internals.

JAEA Reports

Applicability test of plasma cutting technology for dismantling of the core internals of Fukushima Daiichi NPS

Tezuka, Masashi; Nakamura, Yasuyuki; Iwai, Hiroki; Sano, Kazuya

JAEA-Technology 2015-047, 114 Pages, 2016/03

JAEA-Technology-2015-047.pdf:46.17MB

It was reported that Fukushima Daiichi Nuclear Power Plant had been lost the function of cooling the reactor by the Tohoku Earthquake. It is assumed that the original shapes of the internal core are not kept and the inside of the reactor makes so narrow in the space, however the fuel debris and the molten internal core will have to be removed for the decommissioning of 1F. We concerned the suppression of dross by optimization of cutting conditions, in using some moderated test pieces. And we can improve the cutting capability by heating the objects in advance. Moreover, it's possible that plasma arc cutting can cut off the mixed material the fuel debris and the molten internal core by using the cooperation cutting technique both the plasma arc and the plasma jet cutting. From these results, we have got the prospect that plasma cutting method can apply the removal of the fuel debris and the molten internal core.

JAEA Reports

The Development of the basic dismantling procedure of the reactor of FUGEN

Iwai, Hiroki; Nakamura, Yasuyuki; Mizui, Hiroyuki; Sano, Kazuya

JAEA-Technology 2015-046, 110 Pages, 2016/03

JAEA-Technology-2015-046.pdf:85.22MB

Advanced Thermal Reactor (ATR) FUGEN is a proto-type heavy water moderated, boiling light water cooled, pressure tube-type reactor with the thermal power of 557 MW and the electrical power of 165 MW. The reactor of FUGEN is classified into the core region and the shielding region. The core region is highly activated owing to the long term operation, and characterized by its tube-cluster construction that contains 224 fuel channels arranging both the pressure and the calandria tubes coaxially in each channel closely. And the shielding region surrounding the core region has the laminated structure composed of up to 150 mm thickness of carbon steel. The reactor is planning to be dismantled under water remotely in order to shield the radiation around the core and prevent airborne dust generated by the cutting, and firing of zirconium material. This paper reports on the result of development of the basic dismantling procedure of the reactor of FUGEN.

JAEA Reports

The Selection of the cutting technologies for dismantling the FUGEN reactor

Nakamura, Yasuyuki; Iwai, Hiroki; Mizui, Hiroyuki; Sano, Kazuya

JAEA-Technology 2015-045, 137 Pages, 2016/03

JAEA-Technology-2015-045.pdf:27.77MB

FUGEN is 9 m outer-diameter and 7m height, and characterized by its tube-cluster construction that contains 224 fuel channels arranging both the pressure and the calandria tubes coaxially in each channel. And the periphery part of the core has the laminated structure composed of up to 150 mm thickness of carbon steel for radiation shielding. The structure of the reactor, which is made of various materials such as stainless steel, carbon steel, zirconium alloy and aluminum. The reactor is planning to be dismantled under water in order to shield the radiation ray around the core and prevent airborne dust generated by the cutting, the temporary pool structure and the remote-operated dismantling machines needs to be installed on the top of reactor. In consideration of above the structure of Fugen reactor, the cutting method was selected for dismantling the reactor core in order to shorten the dismantling term and reduce the secondary waste.

Journal Articles

The Study on application of laser technology for the reactor core dismantling

Iwai, Hiroki; Nakamura, Yasuyuki; Mizui, Hiroyuki; Sano, Kazuya; Morishita, Yoshitsugu

Proceedings of 7th International Congress on Laser Advanced Materials Processing (LAMP 2015) (Internet), 4 Pages, 2015/08

The reactor of FUGEN is characterized by its tube-cluster construction that contains 224 channels arranging both the pressure and the calandria tubes coaxially in each channel. And the periphery part of the core has the laminated structure of up to 150 mm thickness of carbon steel for radiation shielding. Method for dismantling the reactor core is also being studied with considering processes of dismantlement by remote-handling devices under the water for the radiation shielding. In order to shorten the term of the reactor dismantlement work and reduce the secondary waste, some cutting tests and literature research for various cutting methods had been carried out. As the result, the laser cutting method, which has feature of the narrow cutting kerf and the fast cutting velocity, was mainly selected for dismantling the reactor. In this presentation, current activities of FUGEN decommissioning and R&D of laser cutting tests are introduced.

Journal Articles

Decommissioning activities in FUGEN

Kitamura, Koichi; Kutsuna, Hideki; Matsushima, Akira; Koda, Yuya; Iwai, Hiroki

Dekomisshoningu Giho, (51), p.2 - 10, 2015/04

Fugen Decommissioning Engineering Center (herein after called as "FUGEN") obtained the approval of the decommissioning program on February 2008. FUGEN has been carrying out decommissioning works based on its decommissioning program since then. Now is in initial stage, the dismantling works was launched in turbine system whose contamination was relatively low level and their various data have been accumulating. And the draining heavy water, tritium decontamination and transferring of heavy water were carried out safely and reasonably. The preparation for the clearance system and the research and development works for the reactor core dismantling have been progressed steadily as well. Meanwhile, FUGEN has affiliation with local industries and universities for collaboration research, and has exchanged the decommissioning information with domestic and overseas organizations continuously.

100 (Records 1-20 displayed on this page)