Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 188

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Decommissioning of JMTR and study for construction of a new material testing reactor

Kaminaga, Masanori; Kusunoki, Tsuyoshi; Tsuchiya, Kunihiko; Hori, Naohiko; Naka, Michihiro

IAEA-TECDOC-1943, p.45 - 56, 2021/02

The JMTR operation was once stopped in order to have a check & review in August 2006, and the refurbishment and restart of JMTR was finally determined by the national discussion. The refurbishment was started from FY2007, and was finished in March 2011. However, at the end of the FY2010, the Great-Eastern-Japan-Earthquake occurred, and functional tests before the JMTR restart were delayed. On the other hand, based on the safety assessments considering the 2011 earthquake new regulatory requirements have established on Decmber18, 2013 by the NRA. The new regulatory requirements include the satisfaction of integrities for the updated earthquake forces, Tsunami, the consideration of natural phenomena, and the management of consideration in the Beyond Design Basis Accidents (BDBA) to protect fuel damage and to mitigate impact of the accidents. Analyses related to the new regulatory requirements have intensively been performed timely, and an application to the NRA had been submitted in March 27, 2015. After submission of application, seismic resistance assessment of JMTR reactor building was carried out by assuming the standard earthquake ground motion of 810 ga. As the results, it was found that seismic reinforcement work for reactor building and reactor pool wall were required. As a result, it became clear that at least 7 years of reinforcement work period and cost of about 40 billion yen are required for seismic reinforcement and to meet new regulatory standards. At the same time, it was made clear that high availability such as 8 operation cycles per year as originally planned cannot be expected due to aiging problem. For this reason, JAEA positioned JMTR as a decommissioning facility in the mid- and long-term plan of JAEA announced in April 2017. On the other hand, JAEA started to study the construction of a new material testing reactor. The examination results will be compiled by the end of FY2019. In this paper, outline of JMTR decommissioning plan is described.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2014

Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Takeyasu, Masanori; Mizutani, Tomoko; Isozaki, Tokuju*; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; Nishimura, Tomohiro; et al.

JAEA-Review 2015-034, 175 Pages, 2016/03

JAEA-Review-2015-034.pdf:8.13MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2014 to March 2015. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co. in March 2011.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2013

Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Takeyasu, Masanori; Mizutani, Tomoko; Isozaki, Tokuju; Morisawa, Masato; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; et al.

JAEA-Review 2014-042, 175 Pages, 2015/01

JAEA-Review-2014-042.pdf:10.89MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2013 to March 2014. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Co. in March 2011.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2012

Sumiya, Shuichi; Watanabe, Hitoshi; Miyagawa, Naoto; Nakano, Masanao; Nakada, Akira; Fujita, Hiroki; Takeyasu, Masanori; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; et al.

JAEA-Review 2013-056, 181 Pages, 2014/03

JAEA-Review-2013-056.pdf:6.22MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2012 to March 2013. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Co. in March 2011.

Journal Articles

Technical information exchange with Asian countries

Kaminaga, Masanori

Genankyo Dayori, (258), p.5 - 9, 2014/02

This paper describes the situations at the time of visit to Indonesia and Vietnam, based on technical information exchange with Asian countries for about 25 years, from 1989 to the present.

Journal Articles

$$^{99}$$Mo-$$^{rm 99m}$$Tc production process by (n,$$gamma$$) reaction with irradiated high-density MoO$$_{3}$$ pellets

Tsuchiya, Kunihiko; Nishikata, Kaori; Tanase, Masakazu*; Shiina, Takayuki*; Ota, Akio*; Kobayashi, Masaaki*; Yamamoto, Asaki*; Morikawa, Yasumasa*; Takeuchi, Nobuhiro*; Kaminaga, Masanori; et al.

Proceedings of 6th International Symposium on Material Testing Reactors (ISMTR-6) (Internet), 9 Pages, 2013/10

no abstracts in English

JAEA Reports

Conceptual design of multipurpose compact research reactor; Annual report FY2011

Watahiki, Shunsuke; Hanakawa, Hiroki; Imaizumi, Tomomi; Nagata, Hiroshi; Ide, Hiroshi; Komukai, Bunsaku; Kimura, Nobuaki; Miyauchi, Masaru; Ito, Masayasu; Nishikata, Kaori; et al.

JAEA-Technology 2013-021, 43 Pages, 2013/07

JAEA-Technology-2013-021.pdf:5.12MB

The number of research reactors in the world is decreasing because of their aging. On the other hand, the necessity of research reactor, which is used for human resources development, progress of the science and technology, industrial use and safety research is increasing for the countries which are planning to introduce the nuclear power plants. From above background, the Neutron Irradiation and Testing Reactor Center began to discuss a basic concept of Multipurpose Compact Research Reactor (MCRR) for education and training, etc., on 2010 to 2012. This activity is also expected to contribute to design tool improvement and human resource development in the center. In 2011, design study of reactor core, irradiation facilities with high versatility and practicality, and hot laboratory equipment for the production of Mo-99 was carried out. As the result of design study of reactor core, subcriticality and operation time of the reactor in consideration of an irradiation capsule, and about the transient response of the reactor to the reactivity disturbance during automatic control operation, it was possible to do automatic operation of MCRR, was confirmed. As the result of design study of irradiation facilities, it was confirmed that the implementation of an efficient mass production radioisotope Mo-99 can be expected. As the result of design study with hot laboratory facilities, Mo-99 production, RI export devised considered cell and facilities for exporting the specimens quickly was designed.

JAEA Reports

Simulator for materials testing reactors

Takemoto, Noriyuki; Sugaya, Naoto; Otsuka, Kaoru; Hanakawa, Hiroki; Onuma, Yuichi; Hosokawa, Jinsaku; Hori, Naohiko; Kaminaga, Masanori; Tamura, Kazuo*; Hotta, Koji*; et al.

JAEA-Technology 2013-013, 44 Pages, 2013/06

JAEA-Technology-2013-013.pdf:4.42MB

A real-time simulator for operating both a reactor and irradiation facilities of a materials testing reactor, Simulator of Materials Testing Reactors, was developed for understanding reactor behavior and upskilling in order to utilize for a nuclear human resource development and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the JMTR (Japan Materials Testing Reactor) and it simulates operation, irradiation tests and various kinds of anticipated operational transients and accident conditions caused by the reactor and irradiation facilities. The development of the simulator was sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. This report summarizes the simulation model, hardware specification and operation procedure of the simulator.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2011

Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Nakada, Akira; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Nagaoka, Mika; et al.

JAEA-Review 2013-009, 195 Pages, 2013/06

JAEA-Review-2013-009.pdf:3.35MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2011 to March 2012. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant on Tokyo Electric Power Co. in March 2011.

Journal Articles

Experimental study on heat transfer and pressure drop in mercury flow system for spallation neutron source

Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Terada, Atsuhiko; Hino, Ryutaro

Journal of Nuclear Science and Technology, 50(4), p.400 - 408, 2013/04

 Times Cited Count:5 Percentile:38.62(Nuclear Science & Technology)

In the design of MW-class spallation target system using mercury to produce a practical neutron applications, keeping the highest level of safety is vitally important. To establish the safety of spallation target system, it is essential to understand the thermal-hydraulic properties of mercury. Through thermal-hydraulic experiments using a mercury experimental loop, which flows 1.2 m$$^{3}$$/h maximum, the following facts were experimentally confirmed. The wall friction factor was relatively larger than the Blasius correlation due to the effects of wall roughness. The heat transfer coefficients agreed well with the Subbotin correlation. Furthermore, for validation of the design analysis code, thermal hydraulic analyses were conducted by using the STAR-CD code under the same conditions as the experiments. Analytical results showed good agreements with the experimental results, using optimized turbulent Prandtl number and mesh size.

JAEA Reports

Preliminary accident analysis for a conceptual design of a 10 MW multi-purpose research reactor

Park, C.; Tanimoto, Masataka; Imaizumi, Tomomi; Miyauchi, Masaru; Ito, Masayasu; Kaminaga, Masanori

JAEA-Technology 2012-039, 87 Pages, 2013/01

JAEA-Technology-2012-039.pdf:3.55MB

Preliminary accident analysis has been carried out for a LOFA (Loss of Flow Accident) and RIAs (Reactivity Insertion Accidents) of the conceptual 10 MW MRR (multi-purpose research reactor) under design study by using the RELAP5/MOD3 code in order to provide the preliminary evaluation of safety margin as well as the intuitions to the design of the MRR. Input and modeling for the RELAP5/MOD3 simulations have also been described. The analysis results indicate that the concept of the MRR is feasible with practical safety margins. The same events have been also analyzed by using the PARET/ANL and the EUREKA-2/RR codes to compare the codes suitability, which have been widely used for the analysis of research reactors. Same geometric and modeling data used for the RELAP5/MOD3 have been used as long as they correspond to each code's input requirements. The three codes show the same or similar overall trends for the events analyzed, but show a small difference in a specific condition.

Journal Articles

Current status of JMTR

Ishihara, Masahiro; Kimura, Nobuaki; Takemoto, Noriyuki; Ooka, Makoto; Kaminaga, Masanori; Kusunoki, Tsuyoshi; Komori, Yoshihiro; Suzuki, Masahide

Proceedings of 5th International Symposium on Material Testing Reactors (ISMTR-5) (Internet), 7 Pages, 2012/10

The JMTR has been utilized for fuel/material irradiation examinations of LWRs, HTGR, fusion reactor as well as for RI productions. The refurbishment of the JMTR was started from the beginning of JFY 2007, and finished in March 2011 as planned schedule. Unfortunately, at the end of the JFY 2010 on March 11, the Great-Eastern-Japan-Earthquake occurred, and functional tests before the JMTR restart were delayed by the earthquake. Moreover, a detail inspection found some damages such as small cracks in the concrete structure, ground sinking around the reactor building. Consequently, the restart will delay from June 2011. Now, the safety evaluation of the facility after the earthquake disaster is being carried out aiming at the restart of the JMTR. The renewed JMTR will be started from JFY 2012 and operated for a period of about 20 years until around JFY 2030. The usability improvement of the JMTR is also discussed with users as the preparations for re-operation.

Journal Articles

Development of $$^{99}$$Mo-$$^{rm 99m}$$Tc domestic production with high-density MoO$$_{3}$$ pellets by (n,$$gamma$$) reaction

Tsuchiya, Kunihiko; Tanase, Masakazu*; Takeuchi, Nobuhiro*; Kobayashi, Masaaki*; Hasegawa, Yoshio*; Yoshinaga, Hideo*; Kaminaga, Masanori; Ishihara, Masahiro; Kawamura, Hiroshi

Proceedings of 5th International Symposium on Material Testing Reactors (ISMTR-5) (Internet), 10 Pages, 2012/10

As one of effective uses of the JMTR, JAEA has a plan to produce $$^{99}$$Mo by (n, $$gamma$$) method, a parent nuclide of $$^{rm 99m}$$Tc. In case of Japan, the supplying of $$^{99}$$Mo depends only on imports from foreign countries. The R&D on production method of $$^{99}$$Mo -$$^{rm 99m}$$Tc has been performed with Japanese industrial users under the cooperation programs. The main R&D items for the production are (1) Fabrication of irradiation target such as the sintered MoO$$_{3}$$ pellets, (2) Separation and concentration of $$^{rm 99m}$$Tc by the solvent extraction from Mo solution, (3) Examination of $$^{rm 99m}$$Tc solution for a medicine, and (4) Mo recycling from Mo generator and solution. In this paper, the status of the R&D is introduced for the production of $$^{99}$$Mo -$$^{rm 99m}$$Tc.

Journal Articles

Development of simulator for materials testing reactors; Model overview

Kollryd, T.*; Romas, A.*; Porter-Peden, M.*; Takemoto, Noriyuki; Kimura, Nobuaki; Ooka, Makoto; Kaminaga, Masanori; Ishitsuka, Tatsuo*; Tamura, Kazuo*

Proceedings of 5th International Symposium on Material Testing Reactors (ISMTR-5) (Internet), 9 Pages, 2012/10

A simulator for materials testing reactors has been developed to be utilized for human resource development with an advancement of technology in mind. The simulator is designed based on the JMTR, and the reactor core is modeled with REMARK$$^{TM}$$, in which a 3-dimensional, 4-energy group, time dependent, diffusion theory model is applied. The thermo-hydraulic properties in the reactor vessel are modeled using RELAP5-HD$$^{TM}$$, which is the real-time version of RELAP5-3D code. REMARK$$^{TM}$$ interacts with the RELAP5-HD$$^{TM}$$ thermal hydraulic model by providing power to the moderator. The RELAP5-HD$$^{TM}$$ model, in return, provides thermal hydraulic feedback to the REMARK$$^{TM}$$ model. For the primary and secondary cooling loops, main heat exchangers, purification system and cooling towers, the 2-phase, 6-equation matrix solution modeling tool JTopmeret$$^{TM}$$ is used. The high fidelity level of modern simulators is not only a valuable tool for human resource training, but also an analysis tool for safety in normal/transient/accident conditions of materials testing reactors.

Journal Articles

Nuclear human resource development using JMTR and related facilities as advanced research infrastructures

Takemoto, Noriyuki; Hori, Naohiko; Nakagawa, Shigeaki; Ishitsuka, Etsuo; Kaminaga, Masanori; Nurzhan, S.*; Takibayev. N.*; Aliyev, B.*; Suzuki, Masahide

Proceedings of International Conference of Young Scientists and Specialists; Current Issues on the Peaceful Use of Atomic Energy (Internet), p.17 - 27, 2012/06

The JMTR is expected to be a key infrastructure with related facilities to contribute the nuclear Human Resource Development (HRD) by a research and On-the-Job-Training (OJT) in order to support global expansion of nuclear power industry. The training program for Asian young researchers and engineers were started from JFY 2011 in JAEA, and 10 trainees from Kazakhstan and Thailand had studied in JFY 2011. In addition, the training course was newly established for domestic students and young engineers from JFY 2010 to JFY 2012, and 45 domestic students and engineers were studied in the course from JFY 2010 to JFY 2011.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2010

Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Nakada, Akira; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Kokubun, Yuji; et al.

JAEA-Review 2012-015, 166 Pages, 2012/05

JAEA-Review-2012-015.pdf:3.53MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2010 to March 2011. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant on Tokyo Electric Power Co. in 2011 March. Appendices present comprehensive information, such as monitoring program, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data exceeded the normal range of fluctuation by the accidental release was evaluated in the appendices.

Journal Articles

Status of $$^{99}$$Mo-$$^{99m}$$Tc production development by (n,$$gamma$$) reaction

Tsuchiya, Kunihiko; Mutalib, A.*; Chakrov, P.*; Kaminaga, Masanori; Ishihara, Masahiro; Kawamura, Hiroshi

JAEA-Conf 2011-003, p.137 - 141, 2012/03

As one of effective uses of the JMTR, JAEA has a plan to produce $$^{99}$$Mo by (n,$$gamma$$) method, a parent nuclide of $$^{99m}$$Tc. In case of Japan, the supplying of $$^{99}$$Mo depends only on imports from foreign countries, the R&D on production method of $$^{99}$$Mo-$$^{99m}$$Tc has been performed with foreign countries and Japanese industrial users under the cooperation programs. The main R&D items for the production are (1) Fabrication of irradiation target such as the sintered MoO$$_{3}$$ pellets, (2) Separation and concentration of $$^{99m}$$Tc by the solvent extraction from Mo solution, (3) Examination of $$^{99m}$$Tc solution for a medicine, and (4) Mo recycling from Mo generator and solution. Especially, it is important to establish the separation and extraction methods in the item (2) and the experiments and information exchanges in some methods have been carried out under the international cooperation. In this paper, the status of the R&D is introduced for the production of $$^{99}$$Mo-$$^{99m}$$Tc.

JAEA Reports

Conceptual design of multipurpose compact research reactor; Annual report FY2010 (Joint research)

Imaizumi, Tomomi; Miyauchi, Masaru; Ito, Masayasu; Watahiki, Shunsuke; Nagata, Hiroshi; Hanakawa, Hiroki; Naka, Michihiro; Kawamata, Kazuo; Yamaura, Takayuki; Ide, Hiroshi; et al.

JAEA-Technology 2011-031, 123 Pages, 2012/01

JAEA-Technology-2011-031.pdf:16.08MB

The number of research reactors in the world is decreasing because of their aging. However, the planning to introduce the nuclear power plants is increasing in Asian countries. In these Asian countries, the key issue is the human resource development for operation and management of nuclear power plants after constructed them, and also the necessity of research reactor, which is used for lifetime extension of LWRs, progress of the science and technology, expansion of industry use, human resources training and so on, is increasing. From above backgrounds, the Neutron Irradiation and Testing Reactor Center began to discuss basic concept of a multipurpose low-power research reactor for education and training, etc. This design study is expected to contribute not only to design tool improvement and human resources development in the Neutron Irradiation and Testing Reactor Center but also to maintain and upgrade the technology on research reactors in nuclear power-related companies. This report treats the activities of the working group from July 2010 to June 2011 on the multipurpose low-power research reactor in the Neutron Irradiation and Testing Reactor Center and nuclear power-related companies.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2009

Sumiya, Shuichi; Matsuura, Kenichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Kokubun, Yuji; et al.

JAEA-Review 2011-004, 161 Pages, 2011/03

JAEA-Review-2011-004.pdf:4.09MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2009 to March 2010. Appendices present comprehensive information, such as monitoring program, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes.

Journal Articles

Investigation on integrity of JMTR reactor pressure vessel

Ide, Hiroshi; Kimura, Akihiro; Miura, Hiroshi; Nagao, Yoshiharu; Hori, Naohiko; Kaminaga, Masanori

Proceedings of 18th International Conference on Nuclear Engineering (ICONE-18) (CD-ROM), 10 Pages, 2010/05

Visual observation of inner side of a reactor pressure vessel (RPV) of JMTR was carried out using an underwater camera before the JMTR refurbishment work, because the RPV of the JMTR will be used continuously after restart of the JMTR. As a result of the visual observation, the harmful wound was not confirmed. Moreover, there was no loosening of the bolts and the screws. On the other hand, adhesion materials which can be easily removed were observed in a top closure. A major component of the adhesion materials is an iron as a result of the componential analysis. However, no significant problem affecting the integrity of the RPV was observed, and then the integrity of the RPV was confirmed. From view points of the stress corrosion cracking, fast neutron fluence and fatigue, it became clear that the RPV of the JMTR can be used for more than 20 years. The visual observation by the underwater camera is to be carried out periodically to confirm the integrity of the RPV in future.

188 (Records 1-20 displayed on this page)