検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 150 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

発表言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

第36回NEA核データ評価国際協力ワーキングパーティ(WPEC)会合報告

岩本 修; 岩本 信之; 多田 健一; 片渕 竜也*

核データニュース(インターネット), (139), p.1 - 7, 2024/10

OECD/NEA/NSCが主催するWPEC(Working Party on International Nuclear Data Evaluation Co-operation)の第36回会合、傘下の専門家グループ(EG)及びサブグループ(SG)会合が2024年5月13日から18日にNEA本部とオンラインのハイブリッド形式で開催された。日本からは岩本(修)が現地で参加し、岩本(信之)、多田、片渕がオンラインで参加した。核データの測定や評価及びEGやSGの活動報告、新SGの提案がなされた。これらの概要については報告する。

論文

Neutron capture cross section measurement of $$^{129}$$I and $$^{127}$$I using the NaI(Tl) spectrometer of the ANNRI beamline at J-PARC

Rovira Leveroni, G.; 木村 敦; 中村 詔司; 遠藤 駿典; 岩本 修; 岩本 信之; 藤 暢輔; 瀬川 麻里子; 前田 亮; 片渕 竜也*

European Physical Journal A, 60(5), p.120_1 - 120_14, 2024/05

 被引用回数:0 パーセンタイル:0.00(Physics, Nuclear)

The neutron capture cross section of $$^{129}$$I and $$^{127}$$I were measured from the thermal to the keV energy region with the NaI(Tl) spectrometer of the Accurate Neutron-Nucleus Reaction Measurement Instrument beamline in the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex. The neutron capture yield was determined by means of the total energy detection principle with the pulse-height weighting technique. The present cross section results for $$^{127}$$I were normalized using the saturated resonance method with a thick-enough $$^{197}$$Au and provide good agreement with JENDL-5 from thermal to about 500 keV. A resonance analysis with the REFIT code was performed and the resonance parameters for $$^{127}$$I below 310 eV are presented in this work. In the case of $$^{129}$$I, the three largest resonances of $$^{127}$$I were employed for the cross section normalization. The present results for $$^{129}$$I are the first experimental data for the neutron region between thermal and 20 eV. The present data display a different energy dependence than that in the JENDL-5 and JEFF-3.3 and much similar to that in ENDF/B-VIII.0. Notwithstanding, good agreement was found at the thermal region between the present measurement of 31.6 $$pm$$ 1.3 b and both evaluated and most experimental data.

論文

$$^{241}$$Am neutron capture cross section measurement using the NaI(Tl) spectrometer of the ANNRI beamline of J-PARC

Rovira Leveroni, G.; 木村 敦; 中村 詔司; 遠藤 駿典; 岩本 修; 岩本 信之; 片渕 竜也*; 児玉 有*; 中野 秀仁*; 佐藤 八起*

Journal of Nuclear Science and Technology, 61(4), p.459 - 477, 2024/04

 被引用回数:1 パーセンタイル:27.70(Nuclear Science & Technology)

The neutron capture cross-section of $$^{241}$$Am was measured from 10 meV to about 1 MeV using the NaI(Tl) spectrometer of the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) beamline in the Materials and Life Science (MLF) facility of the Japan Proton Accelerator Research Complex (J-PARC). The total energy detection principle was applied in conjunction with the pulse-height weighting technique to derive the neutron capture yield. The present cross-section results were normalized using a $$^{197}$$Au sample measurement by applying the saturated resonance method. The thermal cross section was measured to be 708 $$pm$$ 22 b, in agreement within uncertainties to the present evaluation in JENDL-5 of 709 b. Moreover, the results of a shape resonance analysis of the resolved resonance region are also provided in the present dissertation.

論文

Neutron capture cross section measurement of $$^{129}$$I and $$^{127}$$I using ANNRI at MLF/J-PARC

Rovira Leveroni, G.; 木村 敦; 中村 詔司; 遠藤 駿典; 岩本 修; 岩本 信之; 藤 暢輔; 瀬川 麻里子; 前田 亮; 片渕 竜也*

JAEA-Conf 2023-001, p.74 - 79, 2024/02

Measurements to measure the neutron capture cross section of $$^{129}$$I and $$^{127}$$I were performed in the Accurate Neutron Nucleus Reaction Measurement Instrument (ANNRI) at the Materials and Life Science Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). The time-of-flight (TOF) methodology was employed to determine the neutron capture cross section from thermal to about 100 keV. The results from $$^{127}$$I were used to normalize the $$^{129}$$I cross section. Preliminary results of a resonance analysis below 100 eV for $$^{129}$$I are also presented.

論文

Measurement of the neutron capture cross section of $$^{185}$$Re in the keV energy region

片渕 竜也*; 佐藤 八起*; 武部 花凛*; 井頭 政之*; 梅澤 征悟*; 藤岡 諒*; 齋藤 辰宏*; 岩本 信之

Journal of Nuclear Science and Technology, 61(2), p.224 - 229, 2024/02

 被引用回数:0 パーセンタイル:0.00(Nuclear Science & Technology)

Measurements of the neutron capture cross section of $$^{185}$$Re have been limited in the keV energy region. In addition, existing measured data have discrepancies. In this study, the neutron time-of-flight method was employed to measure the capture cross section of $$^{185}$$Re at Tokyo Institute of Technology. The capture $$gamma$$-rays were detected with a large volume NaI(Tl) detector. The pulse-height weighting technique was applied to obtain the capture yield. The present results were corrected for neutron scattered effects and impurities in the sample. The measured cross sections were determined with the standard capture cross section of gold in the energy range from 15 to 90 keV, and compared with measured and evaluated data. The results of the measurement provided improved accuracy relative to previous studies in the keV energy range.

論文

原子力研究開発の基盤としての核データ

深堀 智生; 中山 梓介; 片渕 竜也*; 執行 信寛*

日本原子力学会誌ATOMO$$Sigma$$, 65(12), p.726 - 727, 2023/12

「シグマ」調査専門委員会では、グローバルな原子力研究開発動向を調査・注視しつつ、我が国の核データ活動に対する大所高所からの俯瞰的検討や原子力学会以外の広い分野の内外学術機関との連絡、情報交換や学際協力体制の構築を目指している。本報告では、2021-2022期の主な活動のうち、核データに関する要求リストサイト、人材育成、ロードマップ作成の3件について報告する。

論文

Neutron capture cross section and capture $$gamma$$-ray spectrum of $$^{88}$$Sr in the stellar nucleosynthesis energy region

片渕 竜也*; 井頭 政之*; 鎌田 創*; 田近 道英*; 岩本 信之; 河野 俊彦*

Physical Review C, 108(3), p.034610_1 - 034610_12, 2023/09

 被引用回数:0 パーセンタイル:0.00(Physics, Nuclear)

The neutron capture cross section and the capture $$gamma$$-ray spectrum of $$^{88}$$Sr were measured in the keV energy regions. Above 34 keV, the present data are larger than evaluated cross sections which are based on a set of resonance parameters measured in past experiments. To investigate the impact of the present results to the stellar nucleosynthesis, the Maxwellian averaged neutron capture cross section (MACS) was calculated using the present experimental results. The calculated MACS was about 10% smaller than the values widely used in stellar nucleosynthesis calculations and it is found that this difference arises from a problem in calculating the direct capture process in the previous study. In fact, the present and previous MACS become in good agreement when the contribution from the direct neutron capture process that has been theoretically calculated is removed from the previous MACS. This indicates that the previous work overestimated the contribution of the direct capture process. The present experimental capture $$gamma$$-ray spectrum shows that primary transition intensities to the low-lying states of $$^{89}$$Sr drastically changes with the neutron energy.

論文

Neutron total and capture cross-section measurements of $$^{155}$$Gd and $$^{157}$$Gd in the thermal energy region with the Li-glass detectors and NaI(Tl) spectrometer installed in J-PARC$$cdot$$MLF$$cdot$$ANNRI

木村 敦; 中村 詔司; 遠藤 駿典; Rovira Leveroni, G.; 岩本 修; 岩本 信之; 原田 秀郎; 片渕 竜也*; 寺田 和司*; 堀 順一*; et al.

Journal of Nuclear Science and Technology, 60(6), p.678 - 696, 2023/06

 被引用回数:2 パーセンタイル:30.61(Nuclear Science & Technology)

Neutron total and capture cross-section measurements of $$^{155}$$Gd and $$^{157}$$Gd were performed in the ANNRI at the MLF of the J-PARC. The neutron total cross sections were determined in the energy region from 5 to 100 meV. At the thermal neutron energy, the total cross sections were obtained to be 59.4$$pm$$1.7 and 251.9$$pm$$4.6 kilobarn for $$^{155}$$Gd and $$^{157}$$Gd, respectively. The neutron capture cross sections were determined in the energy region from 3.5 to 100 meV with an innovative method by taking the ratio of the detected capture event rate between thin and thick samples. At the thermal energy, the capture cross sections were obtained as 59.0$$pm$$2.5 and 247.4$$pm$$3.9 kilobarn for $$^{155}$$Gd and $$^{157}$$Gd, respectively. The present total and capture cross sections agree well within the standard deviations. The results for $$^{155}$$Gd were found to be consistent with the values in JENDL-4.0 and the experimental data given by Mastromarco et al. and Leinweber et al. within one standard deviation. Moreover, the present results for $$^{157}$$Gd agreed with the evaluated data in JENDL-4.0 and the experimental data by M${o}$ller et al. within one standard deviation and agreed with the data by Mastromarco et al. within 1.4 standard deviations. However, they disagree (11% larger) with the experimental result by Leinweber et al.

論文

Neutron capture cross section measurement and resonance analysis of $$^{107}$$Pd using ANNRI at MLF/J-PARC

中野 秀仁*; 片渕 竜也*; 寺田 和司*; 木村 敦; 中村 詔司; 遠藤 駿典; Rovira Leveroni, G.; 児玉 有*

EPJ Web of Conferences, 284, p.01032_1 - 01032_3, 2023/05

 被引用回数:0 パーセンタイル:0.00(Nuclear Science & Technology)

In the present work, the neutron capture cross section measurements were carried out using the Accurate Neutron Nucleus Reaction Measurement Instrument (ANNRI) at the Materials and Life Science Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). A high intensity pulsed neutron beam from Japan Spallation Neutron Source at the MLF using the 3 GeV proton beam was utilized. NaI(Tl) detectors of ANNRI were used for capture measurements. The time-of-flight (TOF) method was employed to determine the incident neutron energy. Two-dimensional data, TOF and pulse-height (PH), were acquired and the data were analyzed based on a PH weighting technique. Resonance parameters were derived from resonance analysis using the REFIT code.

論文

Neutron filtering system for neutron capture cross section measurement at the ANNRI beamline of MLF/J-PARC

Rovira Leveroni, G.; 木村 敦; 中村 詔司; 遠藤 駿典; 岩本 修; 岩本 信之; 片渕 竜也*; 児玉 有*; 中野 秀仁*; 堀 順一*; et al.

EPJ Web of Conferences, 284, p.06007_1 - 06007_4, 2023/05

 被引用回数:0 パーセンタイル:0.00(Nuclear Science & Technology)

A neutron filtering system has been installed at the ANNRI beamline in order to bypass the doublet structure of the incident neutron beam in the keV region. Thick cylindrical slabs of $$^{nat}$$Fe, $$^{nat}$$Si and $$^{nat}$$Cr which share the characteristic of a sharp minimum in the neutron total cross section, were separately introduced in an intermediate stage of the beamline, before the NaI(Tl) spectrometer experimental area. The filtered neutron beams were analyzed by means of both neutron capture and transmission experiments. Moreover, further information about the neutron energy distribution within the filtered peaks was derived through the use of Monte-Carlo simulations with the PHITS code. The characteristics of the filtered neutron beams for $$^{nat}$$Fe, $$^{nat}$$i and $$^{nat}$$Cr are presented together with $$^{197}$$Au standard experimental results to assess the performance of the neutron filtering system in neutron capture cross section experiments.

論文

Measurements of the neutron capture cross section of Am-243 with the ANNRI beamline, MLF/J-PARC

児玉 有*; 片渕 竜也*; Rovira Leveroni, G.; 木村 敦; 中村 詔司; 遠藤 駿典; 中野 秀仁*; 佐藤 八起*; 堀 順一*; 芝原 雄司*; et al.

EPJ Web of Conferences, 284, p.01024_1 - 01024_3, 2023/05

 被引用回数:0 パーセンタイル:0.00(Nuclear Science & Technology)

The measurements were performed using the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) beamline at the Japan Proton Accelerator Research Complex (J-PARC). An intense pulsed neutron beam was produced via spallation reaction in the mercury target of the Material and Life Science Experimental Facility by the 3-GeV proton beam of the J-PARC facility. A Time of Flight (TOF) method using a NaI(Tl) detector was employed in this measurements and a pulse-height weighting technique was used to derive a neutron capture yield. A sample of Am-243 with a mass of 38.14 mg (281.8 MBq) was used for the measurements. The neutron energy spectrum was obtained by using the 478 keV gamma-rays from the $$^{10}$$B(n,$$alpha$$)$$^{7}$$Li reaction with a boron sample. A preliminary value for the capture cross section of Am-243 will be presented in the contribution.

論文

$$^{241}$$Am neutron capture cross section in the keV region using Si and Fe-filtered neutron beams

Rovira Leveroni, G.; 木村 敦; 中村 詔司; 遠藤 駿典; 岩本 修; 岩本 信之; 片渕 竜也*; 児玉 有*; 中野 秀仁*

Journal of Nuclear Science and Technology, 60(5), p.489 - 499, 2023/05

 被引用回数:3 パーセンタイル:44.16(Nuclear Science & Technology)

The neutron capture cross-section of $$^{241}$$Am was measured in the keV neutron range using the recently implemented neutron filtering system of the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) beamline in the Materials and Life Science (MLF) facility of the Japan Proton Accelerator Research Complex (J-PARC). Filter arrays consisting of 20 cm of $$^{nat}$$Fe and $$^{nat}$$Si were employed in separate measurements to provide filtered neutron beams with averaged neutron energies of 23.5 (Fe), 51.5 and 127.7 (Si) keV. The present $$^{241}$$Am results were obtained relative to the $$^{197}$$Au neutron capture yield by applying the total energy detection principle together with the pulse-height weighting technique. The $$^{241}$$Am neutron capture cross section was determined as 2.72 $$pm$$ 0.29 b at 23.5 keV, 2.14 $$pm$$ 0.26 b at 51.5 keV and 1.32 $$pm$$ 0.10 b at 127.7 keV with total uncertainties in the range of 8 to 12$$%$$, much lower in comparison to the latest time-of-flight experimental data available.

論文

Fast-neutron capture cross section data measurement of minor actinides for development of nuclear transmutation systems

片渕 竜也*; 岩本 修; 堀 順一*; 木村 敦; 岩本 信之; 中村 詔司; Rovira Leveroni, G.; 遠藤 駿典; 芝原 雄司*; 寺田 和司*; et al.

EPJ Web of Conferences, 281, p.00014_1 - 00014_4, 2023/03

Long-lived minor actinides (MA) in nuclear waste from nuclear power plants are a long-standing issue to continue nuclear energy production. To solve the issue, researchers have suggested nuclear transmutation, in which long-lived radionuclides are transmuted into stable or shorter-life nuclides via neutron-induced nuclear reactions. Development of nuclear transmutation systems as an accelerator-driven system requires accurate neutron nuclear reaction data. The present research project entitled "Study on accuracy improvement of fast-neutron capture reaction data of long-lived MAs for development of nuclear transmutation systems" have been conducted as a joint collaboration, including Tokyo Tech, Japan Atomic Energy Agency and Kyoto University. This project focuses on the neutron capture reaction of MAs, especially $$^{237}$$Np, $$^{241}$$Am and $$^{243}$$Am, in the fast neutron energy region. The final goal of this project is to improve the accuracies of the neutron capture cross sections of $$^{237}$$Np, $$^{241}$$Am and $$^{243}$$Am employing a high-intensity neutron beam from a spallation source of the Japan Proton Accelerator Research Complex (J-PARC) that reduces uncertainties of measurement. To achieve the goal, a neutron beam filter system in J-PARC, sample characteristic assay, and theoretical reaction model study were developed. In this contribution, the overview and results of the project will be presented.

論文

Development of a neutron beam monitor with a thin plastic scintillator for nuclear data measurement using spallation neutron source

中野 秀仁*; 片渕 竜也*; Rovira Leveroni, G.; 児玉 有*; 寺田 和司*; 木村 敦; 中村 詔司; 遠藤 駿典

Journal of Nuclear Science and Technology, 59(12), p.1499 - 1506, 2022/12

 被引用回数:2 パーセンタイル:30.61(Nuclear Science & Technology)

A neutron monitoring detection system was developed for neutron capture cross section measurement using a spallation neutron source. A combination of a plastic scintillator and a thin $$^{6}$$LiF foil was adopted for the detector. The detector system was tested to study the feasibility of the system. Neutron irradiation experiments were conducted with the Accurate Neutron-Nucleus Reaction Measurement Instrument in the Materials and Life Science facility of the Japan Proton Accelerator Research Complex. A neutron time-of-flight spectrum was successfully measured without significant count loss or detector paralysis. The statistical uncertainty reached 0.7% at neutron energies around 6 meV.

論文

$$^{241}$$Am neutron capture cross section measurement and resonance analysis

Rovira Leveroni, G.; 木村 敦; 中村 詔司; 遠藤 駿典; 岩本 修; 岩本 信之; 片渕 竜也*; 児玉 有*; 中野 秀仁*; 佐藤 八起*

JAEA-Conf 2022-001, p.91 - 96, 2022/11

Neutron capture cross section measurements were performed in the Accurate Neutron Nucleus Reaction Measurement Instrument (ANNRI) at the Materials and Life Science Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). The time-of-flight (TOF) methodology was employed in a non-filter condition experiment to determine the neutron capture cross section from thermal to about 100 eV. Moreover, experiments were performed using the neutron filtering system to determine the neutron capture cross section at the energy of 23.5 keV using Fe as filter material. In this study, the preliminary results of the $$^{241}$$Am neutron capture cross section from 10 meV to about 100 eV determined in TOF experiments and at 23.5 keV from Fe filter experiments are presented. In the TOF experiments, the $$^{241}$$Am neutron capture cross section was normalized by means of the saturated resonance method using a Au sample with a mass of 1.5 g. In addition, for the Fe filter experiments, the capture cross section of $$^{241}$$Am at the energy of 23.5 keV was determined relative to the $$^{197}$$Au yield obtained from a measurement using the same Au sample. Moreover, early-stage results of a resonance analysis of the $$^{241}$$Am capture resonances are also presented.

論文

核データが原子力研究開発の礎となるために

深堀 智生; 中山 梓介; 片渕 竜也*; 執行 信寛*

日本原子力学会誌ATOMO$$Sigma$$, 64(7), p.413 - 414, 2022/07

「シグマ」調査専門委員会では、グローバルな原子力研究開発動向を調査・注視しつつ、我が国の核データ活動に対する大所高所からの俯瞰的検討や原子力学会以外の広い分野の内外学術機関との連絡、情報交換や学際協力体制の構築を目指している。本報告では、2019-2020期における主な活動のうち、今後の核データ研究活動に直接関連する核データに関する要求リストサイト,人材育成,ロードマップ作成について報告する。

論文

KeV-neutron capture cross-section measurement of $$^{197}$$Au with a Cr-filtered neutron beam at the ANNRI beamline of MLF/J-PARC

Rovira Leveroni, G.; 木村 敦; 中村 詔司; 遠藤 駿典; 岩本 修; 岩本 信之; 片渕 竜也*; 児玉 有*; 中野 秀仁*; 佐藤 八起*; et al.

Journal of Nuclear Science and Technology, 59(5), p.647 - 655, 2022/05

 被引用回数:1 パーセンタイル:10.40(Nuclear Science & Technology)

Cr-filtered keV-neutron experiments were performed in the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) beamline in the Materials and Life Science (MLF) facility of the Japan Proton Accelerator Research Complex (J-PARC) to measure the neutron capture cross-section of $$^{197}$$Au. The energy range of the neutron filtering system at ANNRI was extended through the use of 15 cm of $$^{nat}$$Cr as filter material to tailor quasi-monochromatic neutron peaks with averaged neutron energies of 133.4 and 45.0 keV. The performance of the $$^{nat}$$Cr filter assembly was evaluated by means of experimental capture and transmission analyses, together with the use of Monte-Carlo simulations. The present $$^{197}$$Au neutron capture cross-section results provide agreement within uncertainties with the JENDL-4.0 standard evaluated library and the IAEA standard data library further demonstrating the capabilities of the neutron filtering system at ANNRI.

論文

Neutron filtering system for fast neutron cross-section measurement at ANNRI

Rovira Leveroni, G.; 岩本 修; 木村 敦; 中村 詔司; 岩本 信之; 遠藤 駿典; 片渕 竜也*; 寺田 和司*; 児玉 有*; 中野 秀仁*; et al.

JAEA-Conf 2021-001, p.156 - 161, 2022/03

A neutron filtering system has been designed in order to bypass the double-timed structure of the beam. Filter materials were introduced into the rotary collimator of the ANNRI beamline in order to produce quasi-monoenergetic neutron filtered beams. Filter assemblies consisting of Fe with a thickness of 20 cm, and Si with thicknesses of 20 cm and 30 cm of Si were used separately to produce filtered neutron peaks with energies of 24 keV (Fe) and of 54 and 144 (Si). In this study, the characteristics and performance of the neutron filtering system at ANNRI using Fe and Si determined from both measurements and simulations are presented. The incident neutron flux was tested and analyzed by means of transmission and capture experiments. Moreover, simulations using the PHITS code were performed in order to determine the energy distribution of the integrated filtered peaks and assess the reliability of experimental results. Finally, preliminary results of the capture cross section of $$^{197}$$Au at the filtered energies of 24, 54 and 144 keV are also presented using the NaI(Tl) spectrometer alongside the neutron filtering system.

論文

A New method to reduce systematic uncertainties of capture cross section measurement using a sample rotation system

児玉 有*; 片渕 竜也*; Rovira Leveroni, G.; 中野 秀仁*; 寺田 和司*; 木村 敦; 中村 詔司; 遠藤 駿典

JAEA-Conf 2021-001, p.162 - 165, 2022/03

Precise nuclear data for neutron-induced reactions are necessary for the design of nuclear transmutation systems. Nevertheless, current uncertainties of nuclear data for minor actinide (MA) does not achieve requirements for the design of transmutation facilities. The determination of an incident neutron flux for measurements of neutron capture cross section is one of the main causes that affect the final uncertainty of the cross section results. In the present work, we suggest a new method to reduce systematic uncertainties of capture cross section measurements. The method employs change of the self-shielding effect with sample rotation angle. In capture cross section measurements in ANNRI, a boron sample is placed to determine the incident neutron spectrum by counting 478 keV $$gamma$$-ray from the $$^{10}B(n,alphagamma)^{7}Li$$ reaction. In this method, the boron sample is tilted with respect to the neutron beam direction, thereby changing the effective area. This results in change of the shapes of time-of-flight (TOF) spectrum of 478 keV $$gamma$$-ray from the $$^{10}B(n,alphagamma)^{7}Li$$ reaction with the tilted angle. Comparing the difference of the TOF spectra at different angles and assuming the 1/v energy dependence of cross section of the $$^{10}B(n,alphagamma)^{7}Li$$ reaction, the area density of the boron sample can be determined without using the sample mass and area. Theoretical and experimental studies on the new method are ongoing. Calculation using Monte Carlo simulation code PHITS were carried out to study the feasibility of the present method. Test experiments using a sample rotation system at ANNRI were also performed.

論文

Development of a neutron beam monitor for nuclear data measurement using spallation neutron source

中野 秀仁*; 片渕 竜也*; Rovira Leveroni, G.*; 児玉 有*; 寺田 和司*; 木村 敦; 中村 詔司; 遠藤 駿典

JAEA-Conf 2021-001, p.166 - 170, 2022/03

In neutron capture cross section measurement, monitoring the number of the incident neutrons is necessary. However, in measurement with J-PARC/ANNRI, direct neutron monitoring system has not been employed. Conventional neutron detectors cannot be used as a beam monitor at ANNRI because of two reasons, high counting rate environment and gamma-flash. In general, a semiconductor detector or an inorganic scintillator, which is adopted for a neutron detector, has relatively longer response time and is unsuitable for beam monitoring at ANNRI. Therefore, a combination of a thin plastic scintillator and a $$^{6}$$LiF foil was selected as a detection system, whose fast response enabled detecting neutrons at a high counting rate. Low gamma ray sensitivity of a thin plastic scintillator allows measuring fast TOF region without count loss or detector paralysis. The geometry of the $$^{6}$$LiF foil, the plastic scintillator, and photomultiplier tube (PMT) was designed. The optimal thickness of the $$^{6}$$LiF foil was determined with simulation codes, SRIM and PHITS. The detector system was tested under the high neutron irradiation condition at J-PARC /ANNRI. A neutron TOF spectrum was successfully measured without significant count loss or detector paralysis. A neutron energy spectrum was driven from difference of TOF spectrum with and without $$^{6}$$LiF. The neutron spectrum was compared with a past neutron spectrum and good agreement was obtained. Statistic error was 0.68 $$%$$ at 6.0 meV even though measurement times in this study were short.

150 件中 1件目~20件目を表示