Refine your search:     
Report No.
 - 
Search Results: Records 1-14 displayed on this page of 14
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Report of meetings of ITPA (International Tokamak Physics Activity), 19

Sasao, Mamiko*; Kusama, Yoshinori; Kawano, Yasunori; Kawahata, Kazuo*; Mase, Atsushi*; Sugie, Tatsuo; Fujita, Takaaki; Fukuda, Takeshi*; Fukuyama, Atsushi*; Sakamoto, Yoshiteru; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 83(9), p.779 - 782, 2007/09

This is a report of highlights from 2007 spring meetings of seven Topical Groups (TG) of International Tokamak Physics Activity (ITPA). In each meeting, high priority issues in physics of International Thermonuclear Experimental Reactor (ITER) and other burning plasma experiments have been discussed and investigated. Twenty-seven scientists from Japan have participated in those meetings. Dates and places of the meetings are shown below. (1) Diagnostics TG: 26-30 March, Princeton (USA), (2) Transport Physics TG: 7-10 May, Lausanne (Switzerland), (3) Confinement Database and Modeling TG: 7-10 May, Lausanne (Switzerland), (4) Edge Pedestal Physics TG: 7-10 May, Garching (Germany) (5) Steady State Operation TG: 9-11 May, Daejeon (South Korea), (6)MHD TG: 21-24 May, San Diego (USA), (7) Scrape-off-layer and Divertor Physics TG: 7-10 May, Garching (Germany).

Journal Articles

Report of ITPA (International Tokamak Physics Activity) meetings, 17

Asakura, Nobuyuki; Kato, Takako*; Nakano, Tomohide; Takamura, Shuichi*; Tanabe, Tetsuo*; Iio, Shunji*; Nakajima, Noriyoshi*; Ono, Yasushi*; Ozeki, Takahisa; Takechi, Manabu; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 82(7), p.448 - 450, 2006/07

no abstracts in English

Journal Articles

Report of ITPA (International Tokamak Physics Activity) meeting, 15

Ninomiya, Hiromasa; Asakura, Nobuyuki; Kato, Takako*; Takamura, Shuichi*; Tanabe, Tetsuo*; Nakano, Tomohide; Iio, Shunji*; Ozeki, Takahisa; Ono, Yasushi*; Sugihara, Masayoshi; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 81(11), p.960 - 961, 2005/11

no abstracts in English

Journal Articles

Report of ITPA (International Tokamak Physics Activity) meeting, 13

Kawano, Yasunori; Kawahata, Kazuo*; Kusama, Yoshinori; Sasao, Mamiko*; Sugie, Tatsuo; Mase, Atsushi*; Asakura, Nobuyuki; Kato, Takako*; Takamura, Shuichi*; Tanabe, Tetsuo*; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 81(2), p.128 - 130, 2005/02

no abstracts in English

Journal Articles

10th report of Meeting on ITPA

Asakura, Nobuyuki; Iio, Shunji*; Ozeki, Takahisa; Ono, Yasushi*; Kato, Takako*; Kawano, Yasunori; Sugihara, Masayoshi; Takamura, Shuichi*; Tanabe, Tetsuo*; Nakajima, Noriyoshi*; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 80(7), P. 642, 2004/07

no abstracts in English

Journal Articles

Report of the Meetings of International Tokamak Physics Activity, 8

Asakura, Nobuyuki; Kato, Takako*; Takamura, Shuichi*; Tanabe, Tetsuo*; Higashijima, Satoru; Iio, Shunji*; Ozeki, Takahisa; Ono, Yasushi*; Kawano, Yasunori; Nakajima, Noriyoshi*; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 79(11), p.1194 - 1196, 2003/11

The ITPA (International Tokamak Physics Activity) meeting was held at Scientific Educational Center of Ioffe Institute (St. Petersburg) in Russia. In the meeting, topical physics group meetings of "Scrape-off-layer and Divertor Physics", "MHD, Disruptions and Control", "Energetic Particles, Heating and Steady State Operation", and "Diagnostics" were carried out. The joint meeting for plasma control was also held. In getting many participants from Japan, Europe, Russia, ITER international team, U.S.A. and China (observer), the active discussions were carried out. The outline of discussions in each topical group and in the plasma control joint meeting is reported here.

JAEA Reports

The rationalization design of large equipment dismantling facility (LEDF); Demonstration test on extinguishing of the cell (II)

; ; Matsumoto, Yoshihiro; ; Kato, Noriyoshi; Miyazaki, Hitoshi; Tanimoto, Kenichi

JNC TN9410 2002-010, 62 Pages, 2002/11

JNC-TN9410-2002-010.pdf:2.37MB

The vaporizer in extinguishing of Large Equipment Dismantling Facility (LEDF)that cost is considering as a plan to cut down as part of a rationalization design highly. When the vaporizer is deleted, it becomes here where liquefied carbon dioxide is emitted in the direct cell, it is necessary to grasp the action and extinguishing performance of the pressure change in the cell by rapid evaporation test of the emitted liquefied carbon dioxide. So pressure action inside the fire laboratory in liquefied carbon dioxide release and a putting out the fire tests due to the combustion time of the combustible were enforced by using the general fire laboratory with Demonstration Test on Extinguishing of the cell (I) in the llth year of Heisei. However, since these tests are after laboratory without airtightness, it needs to grasp the pressure action at the time of liquefied carbon dioxide discharge under the airtight high conditions of having assumed the still more nearly actual cell. The cell (II) Demonstration Test on Extinguishing using the vessel of Sodium Leak Fire and Aerosol test rig (SOLFA-2) container inside of OEC was carried out. The results were as follows. (1)In order to grasp the pressure action of the vessel, the internal pressure of SOLFA-2 was set as -50mmH$$_{2}$$O, and emitted liquefied carbon dioxide. Consequently, the tendency for the pressure in the vessel to descend rapidly immediately after liquefied carbon dioxide discharge, and to descend gently-sloping through the process which goes up gradually after that and goes abruptly up for a short time was seen. (2)The process which goes abruptly up in an above-mentioned short time is considered to be the factors with main what some liquefied carbon dioxide emitted in the vessel changed to dry ice, and was deposited taken and sublimating surrounding heat, and evaporating again. (3)It sets to total flooding system and the average minimum temperature in the vessel becomes about -48$$^{circ}$$C, and at ...

JAEA Reports

Rationalization design on large equipment dismantling facility; The cell fire-extinguishing examination (III)

; Matsumoto, Yoshihiro; ; ; Kato, Noriyoshi; Miyazaki, Hitoshi; Tanimoto, Kenichi

JNC TN9410 2002-008, 68 Pages, 2002/07

JNC-TN9410-2002-008.pdf:2.89MB

In order to rationalize for Large Equipment Dismantling Facility (LEDF), the plan of removing vaporizer belong to Cell-fire-extinguishing-system was investigated. When a vaporizer is cut down, It is necessary to grasp a fire-extinguishing performance. The fire-extinguishing performance check examination by liquefaction carbon dioxide in the cell fire-extinguishing examination (I) was carried out in 1999 fiscal year. As the result, The good performance was obtained to polyethylene. But there was the deep-seated fire about a piece of wood. Then, The check items were carbon dioxide (CO$$_{2}$$) concentration and CO$$_{2}$$ concentration holding time for the deep-seated fire in the cell fire-extinguishing examination (III). The results were as follows; (1)By use of the combustion model in which a piece of wood and cotton were put is lit, temperature inside model, mass reduction, and combustion situation were examined. The model burned remarkably in 30$$sim$$60 min. The peak temperature rise to 680 $$^{circ}$$C(MAX), and attained smoldering after (ignition) 70 min. Moreover, in order to determine the generating conditions of a deep-seated fire, the situation of CO$$_{2}$$ extinguishing after ignition by the time lag of 50$$sim$$90 min were examined. The model around ignition 50 minutes was the most difficult to extinguish, and it turned out that they are the conditions which were most suitable for the deep-seated fire examination model of an exam. (2)In order to decide on CO$$_{2}$$ concentration and concentration holding time required for fire extinguishing of the deep-seated fire in LEDF, The fire-extinguishing performance was investigated by 40 $$sim$$ 65% of CO$$_{2}$$ concentration. Consequently, CO$$_{2}$$ concentration required for deep-seated fire extinguishing was understood that 60% or more was required when safety was taken into consideration at 50% or more. Moreover, when it was 50% or more of CO$$_{2}$$ concentration and the holding time of CO$$_{2}$$ concentration ...

JAEA Reports

The design of the hazardous substance sorting system applicability check of X-ray fluorescence spectrometer

; ; ; Kato, Noriyoshi; Miyazaki, Hitoshi; Tanimoto, Kenichi

JNC TN9410 2002-006, 49 Pages, 2002/07

JNC-TN9410-2002-006.pdf:1.84MB

Construction of LEDF (Large Equipment Dismantling Facility) is being planned by Waste Management Section. This purpose of LEDF is the melting treatment of the radioactive waste in OEC (O-arai Engineering Center) and the waste package in JAERI (O-arai Japan Atomic Energy Research Institute). It is also considered about the disposal plan of the future. Therefore LEDF has the sorting process of waste because of the removal of problematic substances. But that process is conducted using its human eyes. This process needs automatic operation because of high classification accuracy, high reliability, burden reduction of a worker. Then we select EXFS (Energy dispersive X-ray Fluorescence Spectrometer), and conducted the measurement of waste (a sample) with this device. That purpose is to confirm an application as the sorting device. A confirmation result is shown in the following. (1)Sorting performance Measurement is possible without pretreatment, if it is metal. However, sorting is difficult when paint, plating, impurities, etc. are shown in the surface. (2)Measurement position It is necessary to set a gap of the measurement thing from a measurement position to 4㎜ or less. (3)Radiation influence Because the background had risen by the influence of a radiant ray, the distinction of Fluorescence X-ray became difficult. Therefore the distinction of materials became impossible. Aluminum is influenced specially by it. As a conclusion, the application nature of EXFS thing Sorting System is high. But there is a bad influence by radiation. Therefore, difficult is installation into the cell. In order to apply EXFS to LEDF, it is necessary to place it outside the cell and to use as the help of the visual inspection.

JAEA Reports

Rationalization design on large equipment dismantling facility; The cell fire-extinguishing examination I

Donomae, Yasushi; Matsumoto, Yoshihiro; Kikuchi, Yutaka; Kato, Noriyoshi; Miyazaki, Hitoshi; Tanimoto, Kenichi

JNC TN9410 2001-021, 73 Pages, 2002/01

JNC-TN9410-2001-021.pdf:3.91MB

In order to rationalize for Large Equipment Dismantling Facility (LEDF), the plan of removing vaporizer belong to Cell-fire-extinguishing-system was investigated. In this test, in order to study the behavior of pressure in cell, when the liquefaction carbon dioxide (liq-CO$$_{2}$$) is emitted, and the performanee of extinguishing fires, the test of behavior of pressure and the extinguishing fires take effect. Also the extinguishing fires test used water-mist take effect for complement liq-CO$$_{2}$$. The results as follows; (1)In the test of behavior of pressure, Liq-CO$$_{2}$$ was emitted test room under -40mmAq negative pressure. Room pressure was increase about 0.8mmAq/sec at first. After 29sec, the pressure was increase slowly about 0.1mmAq/sec. After 120sec, the increase was drastic about 1.5mmAq/s. (2)In the test of extinguishing fires by liq-CO$$_{2}$$, under -40mmAq, Polyethylene and wooden chips + cotton (crib) was burn. Polyethylene was extinguished perfectly, but the embers remained in cribs. While the room pressure was increase about 1.3mmAq/sec for 10sec at first. After 30 sec, the pressure was increase about 1mmAq/sec. On the other hand, the drastic increase of pressure disappeared between 100sec to 120sec by change the nozzle size from 14mm$$^{2}$$ to 10mm$$^{2}$$. (3)In the test of extinguishing fires by water-mist, Cribs was extinguished perfectly, but Polyethylene was extinguished difficulty under the same condition of liq-CO$$_{2}$$ test. (4)Therefore the results, It's coped with the fire extinguishing and the keeping negative pressure for LEDF cells. Therefore nozzle size is fitted cell volume as changing 14mm$$^{2}$$ to 10mm$$^{2}$$. (5)As the performance of extinguishing fires by liq-CO$$_{2}$$, It is necessity the concentration of above 50% CO$$_{2}$$ for combustibles as cribs, remaining the embers. (6)On the other hand, It is necessity most study for the adoption of water-mist. Therefore water-mist was not effective for polyethylene, and it needed water ...

JAEA Reports

The canister durability tests of the in-can type incineration-melting furnace

; Kato, Noriyoshi; Miyazaki, Hitoshi; Tanimoto, Kenichi

JNC TN9410 2001-018, 114 Pages, 2001/09

JNC-TN9410-2001-018.pdf:12.35MB

Construction of LEDF (Large equipment dismantling facility) which has the in-can type incineration-melting furnace is planned. The in-can type incineration-melting furnace performs incineration and melting solidification of radioactive waste within the canister made from ceramics, and is characterized by discarding the canister. On the other hand, as for this furnace, the amount of incineration is restrained to canister capacity, Therefore, how to repeat incineration and melting can be considered as a method of increasing the amount of incineration. However, we were anxious about the contact time of the melt and a canister extending, the amount of wear of canister base material increasing, or the heat load (heat cycle) to a canister increasing, and the material intensity of canister base material falling, in order that this method may repeat incineration and melting. then, the tests used imitation waste, are the conditions which repeat (1,3, 10 bathes) the incineration temperature of 1000 $$^{circ}$$C, and the melt temperature of 1500 $$^{circ}$$C, and investigated change of the amount of wear of canister base material and high temperature bend strength. The result is as follows. (1) The amount of wear of canister base material was 0.09 mm/h at the maximum. This result was a sufficiently few value, even if compared with the conventional result (1.0 mm/h). Moreover, the high temperature bend strength of canister base material is about 3 Mpa on an average, and change was seen before and after the examination to which heat load is applied. (2) These tests showed that the factor which spoils the soundness of a canister was oxidization degradation of the canister base material by peeling from the base material of Glaze (glass coating material). The portion embrittlement by oxidization degradation is locally worn down by contact of the melt. (3)Heat-resistant temperature of Glaze is about 1300 $$^{circ}$$C. At the melting operation temperature of 1500 $$^{circ}$$C, and ...

JAEA Reports

Tests on decisive proof for the incinerating and melting facility using the in-can type high frequency induction heating

; ; Kato, Noriyoshi; Miyazaki, Hitoshi; Tanimoto, Kenichi

JNC TN9410 2000-002, 149 Pages, 1999/12

JNC-TN9410-2000-002.pdf:23.51MB

LEDF (Large Equipment Dismantling Facility) is the solid waste processing technology development facility that carries out high-volume reduction and low dosage processing. The high-volume reduction processing of the high dose $$alpha$$-waste configured with combustible waste, pvc & rubber, spent ion exchange resin, and noncombustible waste have been planned the incinerating and melting facility using the in-can type high frequency induction heating in LEDF. This test is intended to clarify the design data. It was confirmed that the incinerating and melting performance, molten solid properties and exhaust gas processing performance with pilot testing equipment and bench scale equipment. The result of this test are as follows. (1)Processing speed is 6.7kg/h for the combustible waste, 13.0kg/h for the ion exchange resin, and 30.0kg/h for the noncombustible waste. For above optimum processing conditions are as follows. (a)Operating temperature is 1000$$^{circ}$$C for the combustible waste, 1300$$^{circ}$$C for the ion exchange resin, 1500$$^{circ}$$C for the noncombustible waste. (b)Air flow is 90Nm$$^{3}$$/h. Air temperature is 300$$^{circ}$$C. Air velocity is 20m/s. (2)Incineration time per day is 5h. Warm-up time and incineration time from the stop of waste charging is 0.5h. Melting time per day is 5h inconsideration of heating hold time of incinerated ash and melting of quartz. Warm-up time is 0.5h. (3)The system decontamination factor in Co, Cs and Ce with pilot testing equipment is 10$$^{5}$$ or more. (4)Design data of the iron doped silica gel judged to be have a applicability as RuO$$_{4}$$ gas absorber is as follows. (a)Its diameter distribute in the range of 0.8-1.7mm. (b)To have a decontamination factor of 10$$^{3}$$ can achieve for retention time of 3 seconds and its life time is about 1 year. (5)In terms of the distribution of the nuclear species in molten solid is evenly distributed. It was also confirmed that the distribution of main elements in ceramic layer is ...

JAEA Reports

None

Kato, Noriyoshi

JNC TN9200 99-004, 16 Pages, 1998/12

JNC-TN9200-99-004.pdf:1.99MB

None

Oral presentation

Rb/Sr ratio in Lake Baikal sediment core; The New geochemical proxy for East Asian winter monsoon strength during cool climate period

Nara, Fumiko*; Yamasaki, Shinichi*; Watanabe, Takahiro; Tsuchiya, Noriyoshi*; Miyahara, Hiroko*; Kato, Takenori*; Minoura, Koji*; Kakegawa, Takeshi*

no journal, , 

High-time resolution measurements of the major and trace inorganic elements, such as Rb and Sr, from the Lake Baikal sediment core was carried out to estimate the weathering response and the material provenance in the lake watershed. The fluctuations of the Rb/Sr ratio and mean grain size (MGS) during the Holocene were corresponding with each other. The similar profiles between the Rb/Sr ratio and the MGS from loess sediment in China have been observed in previous study. These results imply that the Rb/Sr ratio can be used as the proxy to estimate the East Asian winter monsoon intensity.

14 (Records 1-14 displayed on this page)
  • 1