Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Annual report of Nuclear Emergency Assistance and Training Center (April 1, 2013 - March 31, 2014)

Sato, Takeshi; Muto, Shigeo; Akiyama, Kiyomitsu; Aoki, Kazufumi; Okamoto, Akiko; Kawakami, Takeshi; Kume, Nobuhide; Nakanishi, Chika; Koie, Masahiro; Kawamata, Hiroyuki; et al.

JAEA-Review 2014-048, 69 Pages, 2015/02

JAEA-Review-2014-048.pdf:13.91MB

JAEA was assigned as a designated public institution under the Disaster Countermeasures Basic Act and under the Armed Attack Situations Response Act. Based on these Acts, the JAEA has the responsibility of providing technical support to the national government and/or local governments in case of disaster responses or response in the event of a military attack, etc. In order to fulfill the tasks, the JAEA has established the Emergency Action Plan and the Civil Protection Action Plan. In case of a nuclear emergency, NEAT dispatches specialists of JAEA, supplies the national government and local governments with emergency equipment and materials, and gives technical advice and information. In normal time, NEAT provides various exercises and training courses concerning nuclear disaster prevention to those personnel taking an active part in emergency response institutions of the national and local governments, police, fire fighters, self-defense forces, etc. in addition to the JAEA itself. The NEAT also researches nuclear disaster preparedness and response, and cooperates with international organizations. In the FY2013, the NEAT accomplished the following tasks: (1) Technical support activities as a designated public institution in cooperation with the national and local governments, etc. (2) Human resource development, exercise and training of nuclear emergency response personnel for the national and local governments, etc. (3) Researches on nuclear disaster preparedness and response, and sending useful information (4) International contributions to Asian countries on nuclear disaster preparedness and response in collaboration with the international organizations

JAEA Reports

Annual report of Nuclear Emergency Assistance and Training Center (April 1, 2012 - March 31, 2013)

Sato, Takeshi; Muto, Shigeo; Okuno, Hiroshi; Katagiri, Hiromi; Akiyama, Kiyomitsu; Okamoto, Akiko; Koie, Masahiro; Ikeda, Takeshi; Nemotochi, Toshimasa; Saito, Toru; et al.

JAEA-Review 2013-046, 65 Pages, 2014/02

JAEA-Review-2013-046.pdf:11.18MB

When a nuclear emergency occurs in Japan, the Japan Atomic Energy Agency (JAEA) has the responsibility of providing technical support to the National government, local governments, police, fire stations and nuclear operators etc., because the JAEA has been designated as the Designated Public Institution under the Basic Act on Disaster Control Measures and the Act on Response to Armed Attack Situations, etc.. The Nuclear Emergency Assistance and Training Center (NEAT) of JAEA provides a comprehensive range of technical support activities to an Off-Site Center in case of a nuclear emergency. Specifically, NEAT gives technical advice and information, dispatches specialists as required, and supplies the National Government and local governments with emergency equipments and materials. NEAT provides various exercise and training courses concerning nuclear disaster prevention to those personnel taking an active part in emergency response organizations at normal times. The tasks of NEAT, with its past experiences as a designated public institution including the responses to TEPCO's Fukushima Accident, have been shifted to technical supports to the national government for strengthening its abilities to emergency responses; the NEAT therefore focused on maintenance and operation of its functions, and strengthening its response abilities in cooperation with the national government. This annual report summarized these activities of JAEA/NEAT in the fiscal year 2012.

JAEA Reports

Conceptual design of multipurpose compact research reactor; Annual report FY2010 (Joint research)

Imaizumi, Tomomi; Miyauchi, Masaru; Ito, Masayasu; Watahiki, Shunsuke; Nagata, Hiroshi; Hanakawa, Hiroki; Naka, Michihiro; Kawamata, Kazuo; Yamaura, Takayuki; Ide, Hiroshi; et al.

JAEA-Technology 2011-031, 123 Pages, 2012/01

JAEA-Technology-2011-031.pdf:16.08MB

The number of research reactors in the world is decreasing because of their aging. However, the planning to introduce the nuclear power plants is increasing in Asian countries. In these Asian countries, the key issue is the human resource development for operation and management of nuclear power plants after constructed them, and also the necessity of research reactor, which is used for lifetime extension of LWRs, progress of the science and technology, expansion of industry use, human resources training and so on, is increasing. From above backgrounds, the Neutron Irradiation and Testing Reactor Center began to discuss basic concept of a multipurpose low-power research reactor for education and training, etc. This design study is expected to contribute not only to design tool improvement and human resources development in the Neutron Irradiation and Testing Reactor Center but also to maintain and upgrade the technology on research reactors in nuclear power-related companies. This report treats the activities of the working group from July 2010 to June 2011 on the multipurpose low-power research reactor in the Neutron Irradiation and Testing Reactor Center and nuclear power-related companies.

JAEA Reports

The Outline of investigation on integrity of JMTR concrete structures, cooling system and utility facilities

Ebisawa, Hiroyuki; Hanakawa, Hiroki; Asano, Norikazu; Kusunoki, Hidehiko; Yanai, Tomohiro; Sato, Shinichi; Miyauchi, Masaru; Oto, Tsutomu; Kimura, Tadashi; Kawamata, Takanori; et al.

JAEA-Technology 2009-030, 165 Pages, 2009/07

JAEA-Technology-2009-030.pdf:69.18MB

The condition of facilities and machinery used continuously were investigated before the renewal work of JMTR on FY 2007. The subjects of investigation were reactor building, primary cooling system tanks, secondary cooling system piping and tower, emergency generator and so on. As the result, it was confirmed that some facilities and machinery were necessary to repair and others were used continuously for long term by maintaining on the long-term maintenance plan. JMTR is planed to renew by the result of this investigation.

JAEA Reports

Handling of HTTR second driver fuel elements in assembling and storage working

Tomimoto, Hiroshi; Kato, Yasushi; Owada, Hiroyuki; Sato, Nao; Shimazaki, Yosuke; Kozawa, Takayuki; Shinohara, Masanori; Hamamoto, Shimpei; Tochio, Daisuke; Nojiri, Naoki; et al.

JAEA-Technology 2009-025, 29 Pages, 2009/06

JAEA-Technology-2009-025.pdf:21.78MB

The first driver fuel of the HTTR (High Temperature Engineering test Reactor) was loaded in 1998 and the HTTR reached first criticality state in the same year. The HTTR has been operated using the first driver fuel for a decade. In Fuel elements assembling, 4770 of fuel rods which consist of 12 kinds of enrichment uranium are loaded into 150 fuel graphite blocks for HTTR second driver fuel elements. Measures of prevention of fuel rod miss loading, are employed in fuel design. Additionally, precaution of fuel handling on assembling are considered. Reception of fuel rods, assembling of fuel elements and storage of second driver fuels in the fresh fuel storage rack in the HTTR were started since June, 2008. Assembling, storage and pre-service inspection were divided into three parts. The second driver fuel assembling was completed in September, 2008. This report describes concerns of fuel handling on assembling and storage work for the HTTR fuel elements.

JAEA Reports

Fabrication of irradiation capsule for IASCC irradiation tests, 2; Irradiation capsule for crack propagation test (Joint research)

Ide, Hiroshi; Matsui, Yoshinori; Kawamata, Kazuo; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Onuma, Yuichi; Watanabe, Hiroyuki; Inoue, Shuichi; Izumo, Hironobu; Ishida, Takuya; et al.

JAEA-Technology 2008-012, 36 Pages, 2008/03

JAEA-Technology-2008-012.pdf:10.09MB

It is known that Irradiation Assisted Stress Corrosion Cracking (IASCC) occurs when austenitic stainless steel components used for light water reactor (LWR) are irradiated for a long period. In order to evaluate the high aging of the nuclear power plant, the study of IASCC becomes the important problem. The specimens irradiated in the reactor were evaluated by post irradiation examination in the past study. For the appropriate evaluation of IASCC, It is necessary to test it under the simulated LWR conditions; temperature, water chemistry and irradiation conditions. In order to perform in-pile SCC test, saturated temperature capsule (SATCAP) was developed. There are crack growth test, crack propagation test and so on for in-pile SCC test. In this report, SATCAP for crack propagation test is reported.

JAEA Reports

Fabrication of irradiation capsule for IASCC irradiation tests, 1; Irradiation capsule for crack growth test (Joint research)

Ide, Hiroshi; Matsui, Yoshinori; Kawamata, Kazuo; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Onuma, Yuichi; Watanabe, Hiroyuki; Inoue, Shuichi; Izumo, Hironobu; Ishida, Takuya; et al.

JAEA-Technology 2008-011, 46 Pages, 2008/03

JAEA-Technology-2008-011.pdf:19.39MB

It is known that Irradiation Assisted Stress Corrosion Cracking (IASCC) occurs when austenitic stainless steel components used for light water reactor (LWR) are irradiated for a long period. In order to evaluate the high aging of the nuclear power plant, the study of IASCC becomes the important problem. The specimens irradiated in the reactor were evaluated by post irradiation examination in the past study. For the appropriate evaluation of IASCC, It is necessary to test it under the simulated LWR conditions; temperature, water chemistry and irradiation conditions. In order to perform in-pile SCC test, saturated temperature capsule (SATCAP) was developed. There are crack growth test, crack propagation test and so on for in-pile SCC test. In this report, SATCAP for crack growth test is reported.

JAEA Reports

Study on fluid mixing in a fuel subassembly of a fast reactor; Mixing phenomena with cross flow and applicability of subchannel analysis

Kawamata, Nobuhiro; Miyakoshi, Hiroyuki; Kamide, Hideki

JNC-TN9400 2004-047, 99 Pages, 2004/08

JNC-TN9400-2004-047.pdf:8.02MB

Sodium experiments were carried out for mixing phenomena in a subassembly of fast reactor. A blockage was installed in a wire wrapped 37-pin subassembly in order to form cross flow around the blockage. Temperature distributions in the subassembly were measured under a condition that only one pin was heated. Investigation on mixing phenomena with the cross flow is useful to predict thermohydraulics in a deformed pin bundle of high burnup core. The subchannel analysis code, ASFRE, was applied to the experimental analyses. The ASFRE solves momentum equations in multi dimensions and has the distributed resistance model for a wire spacer.Following remarks were obtained:1).Measured axial temperature distributions showed that the sodium temperature decreased due to the core flow coming from the cold blockage side. Local peaks were found at the subchannels which have the wire spacer. 2).ASFRE simulated the temperature decreases due to the cross flow and axial temperature profiles were in good agreement with the measured data.3).The local peaks at wire positions were also simulated by ASFRE, however, the peak value was underestimated. ASFRE has high applicability to the mixing phenomena in a wire wrapped subassembly where the cross flow has significant role due to the change of flow area.4).Experimental database for the mixing phenomena with the cross flow were obtained for a subassembly of sodium cooled fast reactor.

Journal Articles

Study on mixing due to transversal flow in a fuel subassembly of fast reactor; Sodium experiment using a 37-pin subassembly model

Kamide, Hideki; Kamide, Hideki; Miyakoshi, Hiroyuki; Kawamata, Nobuhiro; Ohshima, Hiroyuki

Proceedings of 12th International Conference on Nuclear Engineering (ICONE-12) (CD-ROM), 49199 Pages, 2004/04

High burnup core is one of significant ways to increase cost performance of a fuel cycle. Deformation of a pin bundle or wrapper tube due to irradiation has been studied for the high burnup core. Here, mixing phenomena with cross flow was investigated for a prediction method of thermohydraulics in a deformed pin bundle in a fast reactor. Sodium experiments were carried out using a wire wrapped 37-pin subassembly model, where a blockage was installed in order to make cross flow around it. The subchannel analysis code, ASFRE, was applied to the experimental analyses. Axial and transverse temperature distributions in the subassembly were correlated with the cross flow and the wire spacer. The calculated temperature profiles including a decrease due to the cross flow were in good agreement with the experimental results. ASFRE simulated also influence of the wire spacer. Database for mixing phenomena with the cross flow was obtained for a subassembly of fast reactor

Oral presentation

Detailed inspection of samples taken from un-irradiated fuel assembly at 1F4, 2; Results of observation by microscopy and surface analysis by SEM/EPMA

Uehara, Hiroyuki; Obata, Hiroki; Endo, Shinya; Kawamata, Yutaka; Motooka, Takafumi; Tsukada, Takashi

no journal, , 

no abstracts in English

Oral presentation

Detailed inspection of samples taken from un-irradiated fuel assembly in 1F4, 3; Results of cross sectional observation by optical microscope and SEM/EPMA

Endo, Shinya; Motooka, Takafumi; Uehara, Hiroyuki; Obata, Hiroki; Kawamata, Yutaka; Ueno, Fumiyoshi

no journal, , 

no abstracts in English

Oral presentation

Research and development of $$^{99}$$Mo/$$^{99m}$$Tc production process by (n,$$gamma$$) reaction under Tsukuba International Strategic Zones

Tsuchiya, Kunihiko; Kawamata, Kazuo; Takeuchi, Nobuhiro*; Ishizaki, Hiroyuki*; Niizeki, Tomotake*; Kakei, Sadanori*; Fukumitsu, Nobuyoshi*; Araki, Masanori

no journal, , 

no abstracts in English

12 (Records 1-12 displayed on this page)
  • 1