Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamada, Ippei; Chimura, Motoki; Kamiya, Junichiro; Kinsho, Michikazu
Journal of Physics; Conference Series, 2687(7), p.072018_1 - 072018_6, 2024/01
no abstracts in English
Sugita, Moe; Takayanagi, Tomohiro; Ueno, Tomoaki*; Ono, Ayato; Horino, Koki*; Kinsho, Michikazu; Oguri, Hidetomo; Yamamoto, Kazami
Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.519 - 522, 2023/11
In J-PARC RCS, paint bump magnets are used to displace the beam orbit during paint injection, which produces a high intensity beam. A pattern of command current and command voltage can be used to create an output current waveform that varies the beam orbit over time. The accuracy of beam orbit control is determined by the shape difference between the command current and output current waveforms. In the current paint pattern adjustment, a deviation of 1% or less is achieved by manual adjustment after using software that adjusts the pattern according to the response function of the power supply control. However, we would like to reduce the adjustment time. In addition, since the accuracy of paint injection is determined by the adjustment system of the paint magnet power supply, we would like to achieve output current deviation 10 times more precise than before to reduce beam loss. An analytical model of the load-side impedance is necessary to create a high-precision paint pattern, but it is very difficult to construct an analytical model because the load-side impedance changes in a time-varying nonlinear paint pattern. We used machine learning to adjust the output pattern of the paint pattern and achieved a deviation of less than 0.5% through repeated learning. This presentation will report on the current status of the system and its prospects.
Saha, P. K.; Harada, Hiroyuki; Yoneda, Hitoki*; Michine, Yurina*; Sato, Atsushi*; Shibata, Takanori*; Kinsho, Michikazu
Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.59 - 63, 2023/11
Nagayama, Shota; Harada, Hiroyuki; Shimogawa, Tetsushi*; Sato, Atsushi*; Yamada, Ippei; Chimura, Motoki; Kojima, Kunihiro; Yamamoto, Kazami; Kinsho, Michikazu
Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.526 - 530, 2023/11
We have been developing "Non-destructive electrostatic septum" for a slow extraction. This septum has multiple electrodes placed around the region without the beam hitting and separate the beam by its electric field. To evaluate its electric field, we have built a prototype septum and a test machine, which consists of an electron gun and monitors. This test machine can measure the electric field indirectly by using a narrow electron beam. The experiment results of prototype septum is good agreement with the calculation one. However, this electric field distribution is not enough to separate the beam. A step function-like electric field distribution is ideal for the beam separation with minimal negative effect on the beam. We have studied to improve the electrode configuration to match the beam shape. In this paper, we present the result of the electric field measurements and the septum improvement. Additionally, we describe the future plan of this development.
Ono, Ayato; Takayanagi, Tomohiro; Fuwa, Yasuhiro; Shinozaki, Shinichi; Ueno, Tomoaki*; Horino, Koki*; Sugita, Moe; Yamamoto, Kazami; Kinsho, Michikazu; Ikoma, Naoya*; et al.
Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.871 - 876, 2023/11
In J-PARC, an ignitron is used for the crowbar device of the klystron power supply to excite the RF acceleration voltage in a Linac cavity. Mercury, that is used in the ignitron, would be prohibition of use in the future due to environmental protection. Therefore, we designed a semiconductor crowbar switch for short-circuit protection of klystron using a MOS gate thyristor. We have manufactured an oval-type board module that realizes an operating output of 3kV, 40kA, and 50us per board. Because a high voltage of 120 kV is applied on each board, we adopted a self-power supply method to supply a electricity for the control system. This method can create the electricity from a high-voltage DCDC converter. We confirmed the operating performance on a 1/2 scale (60 kV, 40 kA) of the voltage in the existing ignitron system (120 kV, 40 kA). We also studied a test circuit in a higher voltage range of more than 90 kV. Our latest result is well promising for an alternative system of ignitron.
Ono, Ayato; Takayanagi, Tomohiro; Sugita, Moe; Ueno, Tomoaki*; Horino, Koki*; Yamamoto, Kazami; Kinsho, Michikazu
JAEA-Technology 2022-036, 31 Pages, 2023/03
In the Japan Atomic Energy Agency (JAEA), many electrical facilities such as power receiving equipment and power supply units are installed in experimental facilities such as the Nuclear Science Research Institute (NSRI) and the Japan Proton Accelerator Research Complex (J-PARC). However, some facilities have been in operation for more than half a century since they were manufactured, some have already been closed or deactivated, and others are still in operation while replacing parts and taking other aging measures. In these facilities, materials that were used because of their excellent properties at the time of manufacture are now designated as hazardous substances and require special management when disposed of. One of them is polychlorinated biphenyl (PCB). PCB were used in a very wide range of fields because of their stability against heat, high electrical insulation, and chemical resistance. However, it was found that PCB have persistent properties and may cause damage to human health and the living environment, and the government has enacted the "Act on Special Measures for Promotion of Proper Treatment of PCB Wastes (PCB Special Measures Law)" to promote reliable and proper disposal. JAEA has almost completed the excavation survey of high-concentration PCB waste and is in the process of excavating low-concentration PCB waste. However, there are still new relevant items to be discovered. This report summarizes and reports the knowledge necessary for identifying PCB waste and points to be noted when handling capacitors, etc., based on examples of actual disassembly and investigation work conducted on power supply units and other electrical equipment, such as capacitors attached to power supply units, etc.
Takayanagi, Tomohiro; Ono, Ayato; Fuwa, Yasuhiro; Shinozaki, Shinichi; Horino, Koki*; Ueno, Tomoaki*; Sugita, Moe; Yamamoto, Kazami; Oguri, Hidetomo; Kinsho, Michikazu; et al.
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.242 - 246, 2023/01
At J-PARC, semiconductor short pulse power supplies to replace kicker power supplies and semiconductor long pulse power supplies to replace klystron power supply systems are under construction. We have fabricated a 40kV/2kA/1.2s unit power supply that employs a linear transformer drivers (LTD) system for kickers. Currently, we are working on a high voltage insulating cylinder insulator that suppresses corona discharges using only the insulator structure, without using insulating oil. In addition, the MARX system was adopted for klystron power supply system. A main circuit unit for 8kV/60A/830s rectangular pulse output and an 800V/60A correction circuit unit that improves the flat top droop from 10% to 1% were manufactured. Furthermore, a 2.2kV/2.4kW high voltage SiC inverter charger has been fabricated for this MARX power supply. The presentation will report the evaluation results of each test and prospects for semiconductor pulse power supplies.
Ono, Ayato; Takayanagi, Tomohiro; Fuwa, Yasuhiro; Shinozaki, Shinichi; Ueno, Tomoaki*; Horino, Koki*; Sugita, Moe; Yamamoto, Kazami; Kinsho, Michikazu; Ikoma, Naoya*; et al.
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.395 - 399, 2023/01
At J-PARC, an ignitron is used for the crowbar device of the klystron power supply for high-frequency acceleration of a linear accelerator. Ignitron uses mercury, which is of limited use worldwide, and is expected to be discontinued in the future. Therefore, we designed a semiconductor crowbar switch for short-circuit protection of klystron using a MOS gate thyristor. We have manufactured an oval-type board module that realizes an operating output of 3 kV, 40 kA, and 50 s per board. For the control power supply to each board module assuming a high voltage of 120 kV, we adopted a self-power supply method that creates a control power supply with a high-voltage DCDC converter from the voltage shared and charged by each board module. It was possible to confirm the operating performance on a 1/2 scale (60 kV, 40 kA) against the voltage of the existing equipment (120 kV, 40 kA) by connecting twenty oval board modules in series. The output test result will be reported.
Saha, P. K.; Harada, Hiroyuki; Kinsho, Michikazu; Yoneda, Hitoki*; Michine, Yurina*; Sato, Atsushi*; Shibata, Takanori*
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.272 - 276, 2023/01
Nagayama, Shota; Harada, Hiroyuki; Shimogawa, Tetsushi*; Yamada, Ippei; Chimura, Motoki; Yamamoto, Kazami; Kinsho, Michikazu
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.503 - 507, 2023/01
Synchrotron accelerators realize physics experiments and radiation cancer treatment using the slow extraction technique, in which beams are stored in the ring and gradually delivered. We have devised and are currently developing a "non-destructive electrostatic septum" based on a new method, which in principle cannot be solved by conventional methods and is a cause of equipment failure and output limitation. It is ideal to generate a force distribution similar to a staircase function with discontinuous gaps at the boundary. In this presentation, we will show the calculation method for optimizing the electrode and wire configuration to generate a Lorentz force with a distribution similar to a staircase function in vacuum, and the calculation results of the beam breakup due to the generated Lorentz force. The compact proof-of-principle machine developed for the ongoing demonstration of this method will also be introduced.
Yamamoto, Kazami; Yamamoto, Masanobu; Yamazaki, Yoshio; Nomura, Masahiro; Suganuma, Kazuaki; Fujirai, Kosuke; Kamiya, Junichiro; Nakanoya, Takamitsu; Hatakeyama, Shuichiro; Yoshimoto, Masahiro; et al.
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.277 - 281, 2023/01
The J-PARC 3GeV Rapid Cycling Synchrotron (RCS) is aiming to provide the proton beam of very high power for neutron experiments and the main ring synchrotron. We have continued the beam commissioning and the output power from RCS have been increasing. In recent years, we have been trying continuous supply of 1-MW high-intensity beam, which is the design value, to a neutron target. We tried to operate continuously for over 40 hours in June 2020. However, some trouble occurred and the operation was frequently suspended. In June 2021, we tried again 1-MW operation but it was suspended due to deterioration of the cooling water performance. Last summer shutdown period, we recovered performance of the cooling water system and retried in this June. In the final case, the outside temperature became extremely high. We could not keep 1-MW power, whereas 600 kW beam was delivered in stable.
Takayanagi, Tomohiro; Sugita, Moe; Ueno, Tomoaki*; Horino, Koki*; Ono, Ayato; Yamamoto, Kazami; Kinsho, Michikazu
IEEE Transactions on Applied Superconductivity, 32(6), p.4101405_1 - 4101405_5, 2022/09
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)In order to design a pulsed electromagnet, it is necessary to consider eddy currents that depend on the pattern shape of the pulse excitation, and to design the structure and set the operating parameters considering the fluctuation of the magnetic field distribution and its effect on heat generation. Evaluation tests of a new bump magnet for the J-PARC RCS showed that the magnetic field distributions at the rising edge of the trapezoidal pattern and at the flat top are different from each other. This was also confirmed by the 3D dynamic magnetic field analysis of OPERA-3d. Since the skin-depth due to eddy currents depends on the time variation of the waveform, the effect is the same as changing the shape of the coil. The measurement of the magnetic field distribution fluctuation was verified and evaluated using a flux meter, search coil, and Hall probe with different measurement principles.
Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.
Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09
Times Cited Count:5 Percentile:81.82(Nuclear Science & Technology)In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.
Chimura, Motoki; Harada, Hiroyuki; Kinsho, Michikazu
Progress of Theoretical and Experimental Physics (Internet), 2022(6), p.063G01_1 - 063G01_26, 2022/06
Times Cited Count:1 Percentile:24.98(Physics, Multidisciplinary)In the low-energy region of a high-intensity ion linac, a strong space-charge field causes a rapid beam emittance growth over a short distance of only few meters. The beam emittance growth leads to a beam loss and the machine activation raising a serious issue for regular maintenance of the accelerator component and beam power ramp up. In this work, we studied the mechanism of beam emittance growth due to the space-charge field based on three-dimensional particle-tracking simulation and theoretical considerations. Numerical simulations done for the high-intensity linac at J-PARC shows that the nonlinear terms in the space-charge field directly cause a beam emittance growth and beam halo formation. Then, we also propose a method to mitigate the beam emittance growth by using an octupole magnetic field, which arises as one of the nonlinear terms in the space-charge field. By applying this method in the simulation, we have succeeded mitigating the beam emittance growth.
Yamada, Ippei; Wada, Motoi*; Kamiya, Junichiro; Kinsho, Michikazu
Journal of Physics; Conference Series, 2244, p.012077_1 - 012077_6, 2022/04
Times Cited Count:0 Percentile:0.32(Engineering, Electrical & Electronic)no abstracts in English
Ono, Ayato; Takayanagi, Tomohiro; Sugita, Moe; Ueno, Tomoaki*; Horino, Koki*; Yamamoto, Kazami; Kinsho, Michikazu
JAEA-Technology 2021-044, 53 Pages, 2022/03
The 3-GeV rapid cycling synchrotron of Japan Proton Accelerator Research Complex (J-PARC) uses a large number of electromagnet power supplies in order to manipulate a high-intensity beam of 1 MW. These devices have been specially developed to meet the requirement to achieve acceleration of the 1-MW proton beams. Because J-PARC has been in operation for 10 years, we have to replace many parts and equipments due to failures caused by age-related deterioration. J-PARC accelerator system supplies the beams for many users, and we have to recover it as soon as possible when a trouble occurs. Therefore, if the trouble can be prevented before it happens, reduction of the user beam time can be minimized. Furthermore, it enables us to reduce additional work for operators. Maintenance is important to keep the equipments in a normal state, and makes it possible to extend the life of the equipments by detecting and maintaining the faulty parts and the aged deterioration parts at an early stage. Since all the devices requires the maintenance, there are a wide variety of maintenance methods. Some works are carried out by the J-PARC members, and some are performed by outsourcing. Ensuring safety and protecting workers are the most important issues in maintenance work. Therefore, J-PARC has rules for safety work. All workers in J-PARC have to learn and follow the rules. In addition, various ideas are being considered to enable safe and efficient work by devising ingenuity in each work. We also elaborate various ideas and processes for safe and efficient work according to the individual work conditions. In this report, we summarize the guideline and cautionary points during maintenance based on the actual case of maintenance and inspection work of the horizontal shift bump electromagnet power supply.
Teshigawara, Makoto; Nakamura, Mitsutaka; Kinsho, Michikazu; Soyama, Kazuhiko
JAEA-Technology 2021-022, 208 Pages, 2022/02
The Materials and Life science experimental Facility (MLF) is an accelerator driven pulsed spallation neutron and muon source with a 1 MW proton beam. The construction began in 2004, and we started beam operation in 2008. Although problems such as exudation of cooling water from the target container have occurred, as of April 2021, the proton beam power has reached up to 700 kW gradually, and stable operation is being performed. In recent years, the operation experience of the rated 1 MW has been steadily accumulated. Several issues such as the durability of the target container have been revealed according to the increase in the operation time. Aiming at making a further improvement of MLF, we summarized the current status of achievements for the design values, such as accelerator technology (LINAC and RCS), neutron and muon source technology, beam transportation of these particles, detection technology, and neutron and muon instruments. Based on the analysis of the current status, we tried to extract improvement points for upgrade of MLF. Through these works, we will raise new proposals that promote the upgrade of MLF, attracting young people. We would like to lead to the further success of researchers and engineers who will lead the next generation.
Sugita, Moe; Ueno, Tomoaki*; Horino, Koki*; Takayanagi, Tomohiro; Ono, Ayato; Yamamoto, Kazami; Kinsho, Michikazu
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.641 - 644, 2021/10
In the J-PARC 3 GeV Rapid Cycling Synchrotron (RCS), shift bump magnets are used to merge the injection beam from the LINAC with the circulating orbit of the RCS. The bump magnets are excited with a trapezoidal pulse waveform, that the rise / fall time and the duration of the flat part can be changed. The injection bump orbit is created by the pulse waveform to inject a 1 MW, high intensity beam at a repetition rate of 25 Hz. An issue to achieve the 1 MW beam is suppression of the beam loss. Therefore, a requirement of the accuracy of the magnetic field is less than 0.2%. Since the time structure of the pulse is so fast, we needed a test to select a magnetic probe with a suitable response. In this report, we will show the results of comparing the search coil, Hall probe and integral flux meter. The result indicated that the integral flux meter with a small measurement error is suitable.
Ono, Ayato; Takayanagi, Tomohiro; Ueno, Tomoaki*; Horino, Koki*; Yamamoto, Kazami; Kinsho, Michikazu
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.831 - 834, 2021/10
The Ignitron is used in the clover device of the klystron power supply for RF acceleration in the J-PARC LINAC. However, this ignitron uses mercury, the use of which is restricted worldwide, and its production is expected to be discontinued in the future. Therefore, we designed a semiconductor clover switch for short-circuit protection of klystron using a MOS gate thyristor. We have manufactured an oval-type board module that realizes an operating output of 3 kV, 40 kA, and 50 s per board. For the control power supply to each board module assuming a high voltage of 120 kV, we adopted a self-power supply method that creates a control power supply with a high-voltage DCDC converter from the voltage shared and charged by each board module. It was possible to confirm the operating performance on a 1/4 scale (30 kV, 40 kA) against the voltage of the existing equipment (120 kV, 40 kA) by connecting ten oval board modules in series. The output test result will be reported.
Yoshimoto, Masahiro; Nakanoya, Takamitsu; Yamazaki, Yoshio; Saha, P. K.; Kinsho, Michikazu; Yamamoto, Shunya*; Okazaki, Hiroyuki*; Taguchi, Tomitsugu*; Yamada, Naoto*; Yamagata, Ryohei*
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.850 - 854, 2021/10
no abstracts in English