検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 9 件中 1件目~9件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

How different is the core of $$^{25}$$F from $$^{24}$$O$$_{g.s.}$$ ?

Tang, T. L.*; 上坂 友洋*; 川瀬 頌一郎; Beaumel, D.*; 堂園 昌伯*; 藤井 俊彦*; 福田 直樹*; 福永 拓*; Galindo-Uribarri. A.*; Hwang, S. H.*; et al.

Physical Review Letters, 124(21), p.212502_1 - 212502_6, 2020/05

 被引用回数:1 パーセンタイル:100(Physics, Multidisciplinary)

中性子過剰核$$^{25}$$Fの構造が($$p,2p$$)反応で調査した。$$pi 0d_{5/2}$$軌道の分光学的因子は1.0$$pm$$0.3と大きいが、一方で残留核である$$^{24}$$Oが基底状態である割合は約35%,励起状態は約0.65%であることが明らかになった。この結果は、$$^{25}$$Fのコア核$$^{24}$$Oは基底状態とは大きく異なり、$$^{24}$$Oの$$0d_{5/2}$$軌道に陽子がひとつ加わることで$$^{24}$$Oと$$^{25}$$Fの中性子軌道が相当に変化していると推測される。これは酸素同位体ドリップライン異常のメカニズムである可能性がある。

報告書

J-PARC物質・生命科学実験施設の全体制御システムの進捗状況

酒井 健二; 大井 元貴; 高田 弘; 甲斐 哲也; 中谷 健; 小林 庸男*; 渡邊 聡彦*

JAEA-Technology 2018-011, 57 Pages, 2019/01

JAEA-Technology-2018-011.pdf:4.98MB

核破砕中性子源やミュオン標的などを安全に効率よく運転するために、物質・生命科学実験施設(MLF)は、専用の全体制御システム(GCS)を持ち、運転状況に応じた機器の監視操作やインターロックを運用している。GCSは、その役割に応じて、ネットワーク系(LAN), 統括制御系(ICS), サーバー, インターロック系(ILS), タイミング配信系(TDS)など幾つかのサブシステムで構成される。GCSは、MLF内の機器を独自に運転制御する一方、J-PARCの加速器や他実験施設と連動しながらMLFの安定したビーム運転を実現している。2008年度のビーム運転開始以来、GCSは運転制御コミッショニングに基づく改修を経て、システム性能を継続的に維持する視点から、ICSの大幅なアップグレードやILSの機能拡張を実施してきた(2010年度-2015年度)。この様に運転開始から約10年間、GCSには全般に渡って数多くの追加・変更がなされてきた。したがってGCS高度化の今後の方向性を決めるために、これまでの高度化の履歴とGCSの現況を把握することが重要と考え、2017年度時のGCSの構成・機能・役割を整理して取り纏めた。

論文

国際核融合エネルギー研究センターの高性能計算機システムHeliosを利用した国内シミュレーション研究プロジェクトの進展

石澤 明宏*; 井戸村 泰宏; 今寺 賢志*; 糟谷 直宏*; 菅野 龍太郎*; 佐竹 真介*; 龍野 智哉*; 仲田 資季*; 沼波 政倫*; 前山 伸也*; et al.

プラズマ・核融合学会誌, 92(3), p.157 - 210, 2016/03

幅広いアプローチ協定に基づいて国際核融合エネルギー研究センター(IFERC)の計算機シミュレーションセンター(CSC)に設置された高性能計算機システムHeliosは、2012年1月に運用を開始し、日欧の磁気核融合シミュレーション研究に供用され、高い利用率の実績を示すとともに、炉心プラズマ物理から炉材料・炉工学にわたる広い分野で多くの研究成果に貢献している。本プロジェクトレビューの目的は、国内の大学や研究機関においてHeliosを利用して進められているシミュレーション研究プロジェクトとその成果を一望するとともに、今後予想される研究の進展を紹介することである。はじめにIFERC-CSCの概要を示した後、各研究プロジェクト毎にその目的、用いられる計算手法、これまでの研究成果、そして今後必要とされる計算を紹介する。

論文

Superdeformation in $$^{35}$$S

郷 慎太郎*; 井手口 栄治*; 横山 輪*; 小林 幹*; 木佐森 慶一*; 高木 基伸*; 宮 裕之*; 大田 晋輔*; 道正 新一郎*; 下浦 享*; et al.

JPS Conference Proceedings (Internet), 6, p.030005_1 - 030005_4, 2015/06

The high-spin states in $$^{35}$$S were investigated at Tandem-ALTO facility in Institut de Physique Nucl$'e$aire d'Orsay The $$^{26}$$Mg($$^{18}$$O, 2$$alpha$$1n)$$^{35}$$S fusion evaporation reaction was used to populate high-spin states in $$^{35}$$S. The germanium $$gamma$$-ray detector array ORGAM was employed to measure $$gamma$$ rays from high-spin states and charged particles evaporated from the compound nuclei were detected by a segmented silicon detector, Si-Ball. A level scheme for $$^{35}$$S was deduced based on the gamma-gamma-coincidence analysis and $$gamma$$-ray angular correlation analysis. The half-life of the transition in the superdeformed band was estimated by measuring the residual Doppler shift. The deduced half-life shows the large collectivity of the band.

論文

Temporal and spatial responses of temperature, density and rotation to electron cyclotron heating in JT-60U

吉田 麻衣子; 井手 俊介; 竹永 秀信; 本多 充; 浦野 創; 小林 貴之; 仲田 資季; 宮戸 直亮; 鎌田 裕

Nuclear Fusion, 53(8), p.083022_1 - 083022_10, 2013/07

 被引用回数:5 パーセンタイル:71.4(Physics, Fluids & Plasmas)

JT-60装置の閉じ込め改善モード(H-mode)のプラズマと内部障壁(ITB)を有するプラズマにおいて、電子サイクロトロン加熱(ECH)時のイオン系と電子系の応答特性と輸送について調べ、以下のことを明らかにした。ECHにより電子温度は上昇し、イオン温度は減少する。イオン温度の減少するタイムスケールは、H-modeにおいてはECH入射位置で短く、ITBプラズマにおいてはITBの形成位置で短い。ECHのパワーが増加すると、イオンの熱輸送係数と電子の熱輸送係数はともに増加する。電子密度がピークしている場合に、ECHによる電子密度の減少が起こる。トロイダル回転速度は、ECHを入射すると零回転からプラズマ電流とは逆方向に変化する特性を持つ(ECHによる自発回転の存在)。この回転の変化は、イオン温度の減少や電子温度の上昇のタイムスケールより2倍以上長い。ECH入射付近では、トロイダル回転速度の変化と電子温度の変化は相関しているのに対して、トロイダル回転が変化する半径位置は電子温度やイオン温度が変化する位置より広い。

口頭

Responses of electron and ion channels to electron cyclotron heating in JT-60U H-mode and ITB plasmas

吉田 麻衣子; 井手 俊介; 竹永 秀信; 本多 充; 浦野 創; 小林 貴之; 仲田 資季; 宮戸 直亮; 鎌田 裕

no journal, , 

JT-60装置の閉じ込め改善モード(H-mode)のプラズマと内部障壁(ITB)を有するプラズマにおいて、電子サイクロトロン加熱(ECH)時のイオン系と電子系の応答特性と輸送について調べ、以下のことを明らかにした。ECHにより電子温度は上昇し、イオン温度は減少する。イオン温度の減少するタイムスケールは、H-modeにおいてはECH入射位置で短く、ITBプラズマにおいてはITBの形成位置で短い。ECHのパワーが増加すると、イオンの熱輸送係数と電子の熱輸送係数はともに増加する。電子密度がピークしている場合に、ECHによる電子密度の減少が起こる。トロイダル回転速度は、ECHを入射すると零回転からプラズマ電流とは逆方向に変化する特性を持つ(ECHによる自発回転の存在)。この回転の変化は、イオン温度の減少や電子温度の上昇のタイムスケールより2倍以上長い。ECH入射付近では、トロイダル回転速度の変化と電子温度の変化は相関しているのに対して、トロイダル回転が変化する半径位置は電子温度やイオン温度が変化する位置より広い。

口頭

JT-60Uにおける電子サイクロトロン加熱のイオン系及び電子系の輸送に与える影響

吉田 麻衣子; 井手 俊介; 竹永 秀信; 本多 充; 浦野 創; 小林 貴之; 仲田 資季; 宮戸 直亮; 鎌田 裕

no journal, , 

JT-60装置の閉じ込め改善モード(H-mode)のプラズマと内部障壁(ITB)を有するプラズマにおいて、電子サイクロトロン加熱(ECH)時の電子密度,電子温度,イオン温度,トロイダル回転の応答特性と粒子・熱・運動量輸送について調べ、以下のことを明らかにした。ECHにより電子温度は上昇し、イオン温度は減少する。イオン温度の減少するタイムスケールは、H-modeにおいてはECH入射位置で短く、ITBプラズマにおいてはITBの形成位置で短い。ECHのパワーが増加すると、イオンの熱輸送係数と電子の熱輸送係数はともに増加する。電子密度がピークしている場合に、ECHによる電子密度の減少が起こる。トロイダル回転速度は、ECHを入射すると零回転からプラズマ電流とは逆方向に変化する特性を持つ(ECHによる自発回転の存在)。この回転の変化は、イオン温度の減少や電子温度の上昇のタイムスケールより2倍以上長い。ECH入射付近では、トロイダル回転速度の変化と電子温度の変化は相関しているのに対して、トロイダル回転が変化する半径位置は電子温度やイオン温度が変化する位置より広い。

口頭

J-PARC/物質・生命科学実験施設全体制御システムの進捗

酒井 健二; 大井 元貴; 高田 弘; 甲斐 哲也; 中谷 健; 小林 庸男*; 渡邊 聡彦*

no journal, , 

核破砕中性子源やミュオン標的などを安全に効率よく運転するために、物質・生命科学実験施設(MLF)では、専用の全体制御システム(GCS)を持ち、運転状況に応じた機器の監視操作やインターロックを運用している。GCSは、MLF制御室の監視操作システムから専用リンクを介して、MLF内の機器を独自に運転制御する一方、J-PARCの加速器や他実験施設と連動しながらMLFの安定したビーム運転を実現している。GCSは、その役割に応じてネットワーク系(LAN), 統括制御系(ICS), サーバー, インターロック系(ILS), タイミング配信系(TDS)など幾つかのサブシステムで構成される。2008年のビーム運転開始以来、GCSは運転制御コミッショニングに基づく改修(2008年$$sim$$2009年)を経て、機器や装置の増強・増設が毎年の様に実施される環境下でシステム性能を継続的に維持する視点から、ICSの大幅なアップグレードやILSの機能拡張を実施してきた(2010年$$sim$$2015年)。近年は、制御機器の生産・サポート終了に伴い、後継機種への更新を進めている。本発表では運転開始から約10年間のGCSの運転・改造の履歴と、現時点(2017年)でのGCSの概要や各サブシステムの機能・役割などについて報告する。

口頭

物質・生命科学実験施設; 全体制御システムの進捗と今後

酒井 健二; 大井 元貴; 羽賀 勝洋; 高田 弘; 甲斐 哲也; 中谷 健; 小林 庸男*; 渡邊 聡彦*

no journal, , 

核破砕中性子源やミュオン標的などを安全に効率よく運転するために、物質・生命科学実験施設(MLF)は、専用の全体制御システム(GCS)を有する。GCSは、その役割に応じて、ネットワーク系(LAN), 統括制御系(ICS), サーバー, インターロック系(ILS), タイミング配信系(TDS)など幾つかのサブシステムで構成される。GCSは、MLF内の機器を独自に運転制御する一方、J-PARCの加速器や他実験施設と連動しながらMLFの安定したビーム運転を実現している。2008年度のビーム運転開始以来、GCSは運転制御コミッショニングに基づく改修を経て、システム性能を継続的に維持する視点から、ICSの大幅なアップグレードやILSの機能拡張を実施してきた(2010年度-2015年度)。近年は、制御機器の生産・サポート終了に伴い、後継機種への更新を進めている。本発表では運転開始から約10年間のGCSの運転・改造の履歴と、現時点での各サブシステムの機能・役割などについて総括する。また将来計画として、MLF全域に渡る運転データ使って、線源の僅かな状態変化から潜在的な異常を検知する異常兆候判定システムの開発についても議論する。

9 件中 1件目~9件目を表示
  • 1