Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Koarashi, Jun; Takeuchi, Erina; Kokubu, Yoko; Atarashi-Andoh, Mariko
Radiocarbon, 67(2), p.307 - 317, 2025/04
Radiocarbon (C) dating of soil samples by accelerator mass spectrometry has been proven useful for studying carbon (C) cycling in terrestrial ecosystems. There are, however, two main difficulties in sample preparation for this application: contamination of samples with modern C and inhibition of graphite formation due to sulfur (S)-containing impurities. Here we evaluated these effects from three different sample preparation methods, by conducting
C measurements of
C-dead sample and S-rich soil samples. The preparation methods were all successful in graphite formation and
C measurement for soil samples with an organic S content
6.9%. The different methods showed different percent Modern Carbon (pMC) values ranging from 0.19% to 0.64% for
C-dead sample. However, the three methods had little influence on the determination of
C age for samples at least younger than 12,000 yr BP. The methods examined in the present study can be used for
C dating with sufficient accuracy in the application to C cycle studies.
Kokubu, Yoko; Takeuchi, Ryuji; Nishio, Kazuhisa*; Ikeda, Koki
JAEA-Review 2024-066, 67 Pages, 2025/03
The Tono Geoscience Center of the Japan Atomic Energy Agency has undertaken backfilling and restoration activities at the Mizunami Underground Research Laboratory (MIU) site since fiscal year 2020. These activities are being conducted in accordance with "The MIU Project from FY2020 Onwards," outlining the procedures for backfilling, restoration, and environmental monitoring at the MIU site. The backfilling activity was completed in January 2022, and thereafter, the observation of the backfilled shafts was commenced. On November 6, 2023, the settlement of the backfilled surface was observed in the Main Shaft and the Ventilation Shaft. By December 5, 2023, the depth of the settlement reached 12.9 m in the Main Shaft and 27.7 m in the Ventilation Shaft. After an evaluation by the MIU safety confirmation committee, which assessed the settlement condition and recommended countermeasures, the affected areas were backfilled for safety reasons. This report summarizes the observed settlement of the backfilled surface, the subsequent rebackfilling efforts, and the condition of the surface settlement areas. The condition of the backfilled sections has been confirmed up to June 2024.
Takeuchi, Ryuji; Kokubu, Yoko; Nishio, Kazuhisa*
JAEA-Data/Code 2024-015, 68 Pages, 2025/02
The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the environmental monitoring investigation to confirm the environmental impacts associated with the backfilling of shafts and tunnels at the Mizunami Underground Research Laboratory (MIU). This report summarizes the results of the environmental impact investigations conducted as part of the environmental monitoring investigation around the MIU Site in FY2023, which include groundwater level measurement in wells, river flow rate measurement, water analysis of Hazama river, noise and vibration surveys, and soil survey.
Takeuchi, Ryuji; Kokubu, Yoko; Nishio, Kazuhisa*
JAEA-Data/Code 2024-011, 120 Pages, 2024/12
The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the groundwater pressure and hydrochemical monitoring to confirm the restoration process of the surrounding geological environment associated with the backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (MIU). This report summarizes the data of the groundwater pressure and hydrochemical monitoring from boreholes and so forth at and around the MIU conducted in FY2023.
Mitsuguchi, Takehiro; Okabe, Nobuaki*; Kokubu, Yoko; Matsuzaki, Hiroyuki*
Genshiryoku Bakkuendo Kenkyu (CD-ROM), 31(2), p.96 - 110, 2024/12
Geological disposal of high-level radioactive waste requires not only selecting sites appropriate for the waste repository, where its isolation ability would not be damaged by natural phenomena for several tens of thousands of years, but also rationally constructing the disposal system depending on site-specific geological environments and their anticipated long-term variability. Recently, elemental/isotopic compositions of underground fluids (deep groundwaters, hot/cold spring waters, brines associated with oil and natural gas reservoirs, and so on) in Japan have been studied for evaluating the long-term stability of the geological environments of this country. Iodine and its radioactive isotope I (half-life = 15.7 million years) are included in the subjects of the study. The current review paper provides overviews of (i) the iodine content and iodine-129/127 ratio (
I/
I ratio) of various materials in Earth's surface layers, (ii) relevant sample pretreatments and measurements, and (iii)
I/
I data of the underground fluids in Japan, then gives (iv) some interpretations of the fluid
I/
I data, along with their problems and uncertainties, and (v) some implications towards evaluating the long-term stability of geological environments.
Takeuchi, Ryuji; Kokubu, Yoko; Nishio, Kazuhisa*
JAEA-Data/Code 2023-014, 118 Pages, 2024/02
The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the groundwater pressure and hydro-chemical monitoring to confirm the restoration process of the surrounding geological environment associated with the backfilling of shafts and tunnels of Mizunami Underground Research Laboratory (MIU). This report summarizes the data of the groundwater pressure and hydro-chemical monitoring from boreholes and forth at and around the MIU conducted in FY2022. In addition, unreported hydro-chemical monitoring data from the boreholes and forth at the MIU conducted in FY2021 were also compiled.
Takeuchi, Ryuji; Nishio, Kazuhisa*; Kokubu, Yoko
JAEA-Data/Code 2023-013, 74 Pages, 2024/01
The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the environmental monitoring investigation to confirm the environmental impacts associated with the backfilling of shafts and tunnels at the Mizunami Underground Research Laboratory (MIU). This report summarizes the results of the environmental impact investigations conducted as part of the environmental monitoring investigation around the MIU Site in FY2022, which include groundwater level measurement in wells, river flow rate measurement, water analysis of Hazama river, noise and vibration surveys, and soil survey.
Takeuchi, Ryuji; Mikake, Shinichiro; Ikeda, Koki; Nishio, Kazuhisa*; Kokubu, Yoko; Hanamuro, Takahiro
JAEA-Review 2023-007, 114 Pages, 2023/07
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center has been conducting the Mizunami Underground Research Laboratory (MIU) Project to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline rock (granite) at Mizunami City, Gifu Prefecture, central Japan since fiscal year 1996. Backfilling and restoration works in the MIU site have been being conducted based on "the MIU Project from FY2020 onwards" which is defined the way forward of backfilling and restoration works and environmental monitoring investigations in the MIU site, since fiscal year 2020. This report summarizes the outline, process, and achievements of the construction and the safety patrol of the backfilling and restoration works in the MIU site performed from May 16, 2020 to January 16, 2022.
Nara, Fumiko*; Watanabe, Takahiro; Kokubu, Yoko; Zhu, L.*
Nuclear Instruments and Methods in Physics Research B, 539, p.28 - 32, 2023/06
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Lake Pumoyum Co is located on the south Tibetan Plateau. The lake terraces are developed on the eastern lake shore, and it supposed that the large lake level changes would have happened in Pumoyum Co. The in-situ terrestrial cosmogenic adionuclides can be used to estimate the earth surface processes, such as the erosion rate and exposure age dating of rocks. Here we report the results of Be values of the rock samples from the lake terraces around Pumoyum Co. The concentrations of
Be were measured by the JAEA-AMS-TONO-5MV in the Tono Geoscience Center, Japan Atomic Energy Agency. The
Be concentrations ranged from 3.78 to 10.8
10
(atoms/g), but the
Be values showed the decreasing trend following to the distance from the lake shore. This result indicates that
Be values of the rocks at the shore of Pumoyum Co could be influenced from the erosion rate or tectonic process rather than the exposure date resulting from the lake level changes.
Kokubu, Yoko; Fujita, Natsuko; Watanabe, Takahiro; Matsubara, Akihiro; Ishizaka, Chika; Miyake, Masayasu*; Nishio, Tomohiro*; Kato, Motohisa*; Ogawa, Yumi*; Ishii, Masahiro*; et al.
Nuclear Instruments and Methods in Physics Research B, 539, p.68 - 72, 2023/06
Times Cited Count:1 Percentile:32.32(Instruments & Instrumentation)The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has an accelerator mass spectrometer (JAEA-AMS-TONO-5MV). The spectrometer enabled us to use a multi-nuclide AMS of carbon-14 (C), beryllium-10, aluminium-26 and iodine-129, and we have recently been proceeding test measurement of chlorine-36. In response to an increase of samples, we installed a state-of-the-art multi-nuclide AMS with a 300 kV Tandetron accelerator in 2020. Recently, we are driving the development of techniques of isobar separation in AMS and of sample preparation. Ion channeling is applied to remove isobaric interference and we are building a prototype AMS based on this technique for downsizing of AMS. The small sample graphitization for
C has been attempted using an automated graphitization equipment equipped with an elemental analyzer.
Takeuchi, Ryuji; Nishio, Kazuhisa*; Hanamuro, Takahiro; Kokubu, Yoko
JAEA-Data/Code 2022-010, 110 Pages, 2023/03
The Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) has been conducting the environmental monitoring investigation to confirm the environmental impacts associated with the backfilling of shafts and tunnels at the Mizunami Underground Research Laboratory (MIU). This report summarizes the results of environmental impact investigations conducted as part of the environmental monitoring investigation around the MIU Site from FY2020 to FY2021, which include groundwater level measurement in wells, river flow rate measurement, water analysis of Hazama river, noise and vibration surveys, and soil survey.
Matsubara, Akihiro*; Fujita, Natsuko; Miyake, Masayasu; Ishii, Masahiro*; Watanabe, Takahiro; Kokubu, Yoko; Nishio, Tomohiro*; Ogawa, Yumi; Jinno, Satoshi; Kimura, Kenji; et al.
JAEA-Conf 2022-002, p.55 - 62, 2023/03
We report the present status of the JAEA-AMS-TONO. Particularly, the destructions of varistors used in the beamline equipment will be presented. The cause of the destruction as well as implementation of the safety measures are mentioned.
Kokubu, Yoko; Utsumi, Yoshinori*; Ito, Saburo*; Shimada, Koji
Dai-23-Kai AMS Shimpojiumu Hokokushu, p.60 - 63, 2022/12
In the case of estimating erosion rates of ground surfaces from measurement of beryllium-10 and aluminum-26, quartz contained in rocks and sediments is used as a measurement sample. In this paper, we present an example of separating quartz using a cell handler, which is a cell separation system, without chemical treatment using hydrofluoric acid. By optimizing the way to apply light to the mineral sample with the cell handler and the exposure time of the camera of the cell handler, quartz and other minerals, such as feldspar, were able to be distinguished from other minerals, such as feldspar in image recognition. An experimental measurement using rock samples was then performed under these conditions. As a result, only quartz was successfully separated through a fully automatized process by that distinguishes and picks quartz using the image recognition software and picking system built into the cell handler.
Fujita, Natsuko; Miyake, Masayasu*; Matsubara, Akihiro; Kokubu, Yoko; Klein, M.*; Scognamiglio, G.*; Mous, D. J. W.*; Columna, E. L.*; Shimada, Akiomi; Ishimaru, Tsuneari
Nuclear Instruments and Methods in Physics Research B, 533, p.91 - 95, 2022/12
Times Cited Count:1 Percentile:19.87(Instruments & Instrumentation)In the Tono Geoscience Center, Japan Atomic Energy Agency, investigation of deep underground environments for R&D program related to the geological disposal of High-Level Radioactive Waste has been performed by using various dating systems including an AMS system. In response to the increasing demand for our AMS measurements especially from a newly established R&D program supporting development of technology for geological disposal of HLW, a state-of-the-art multi-nuclide AMS system was installed. This system is equipped with a 300 kV AMS. The system has capability to measure four nuclides: carbon-14, beryllium-10, aluminium-26 and iodine-129. The system structure and features, as well as the results of performance test will be presented.
Fujita, Natsuko; Matsubara, Akihiro; Kimura, Kenji; Jinno, Satoshi; Kokubu, Yoko
Nuclear Instruments and Methods in Physics Research B, 532, p.13 - 18, 2022/12
Times Cited Count:2 Percentile:35.55(Instruments & Instrumentation)Over the last decade, significant technological advances were made to downsize the AMS systems. Japan Atomic Energy Agency has started a project for developing a prototype downsized AMS system (with the footprint of the system is 1.9 m 1.9 m) based on the surface stripper technique. Although the system configuration using an ion source, magnets, and detectors is similar to that in conventional systems, there is no tandem accelerator as well as a gas stripper. The ion acceleration is provided in the ion source (maximum ion energy 40 keV). For proof-of-principle experiments, we have planned two steps: (1) Observation of the specular reflection and the dissociation by using a compact electrostatic analyzer located just behind the stripper, and (2) Demonstration of
C measurement, along with the experimental confirmation of the isobar suppression capability of the surface stripper.
Mitsuguchi, Takehiro; Minakata, Keiji*; Sugihara, Kaoru*; Hiraoka, Masanori*; Yoshida, Masaaki*; Kokubu, Yoko
bioRxiv (Internet), 55 Pages, 2022/11
Fujita, Natsuko; Matsubara, Akihiro; Miyake, Masayasu*; Watanabe, Takahiro; Kokubu, Yoko; Nishio, Tomohiro*; Ogawa, Yumi*; Kato, Motohisa*; Shimada, Akiomi; Ogata, Nobuhisa
Dai-33-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, P. 48, 2022/04
no abstracts in English
Kokubu, Yoko; Matsubara, Akihiro; Fujita, Natsuko; Kuwabara, Jun; Kinoshita, Naoki
JAEA-Technology 2021-028, 33 Pages, 2022/02
Japan Atomic Energy Agency (JAEA) has two facilities of accelerator mass spectrometry, JAEA-AMS-TONO and JAEA-AMS-MUTSU at Tono Geoscience Center and Aomori Research and Development Center, respectively. In this report, characteristics of each facility and results of standard samples in the inner-comparison test of carbon isotope measurement will be described. Both facilities have been used for research by not only JAEA's staff but also researchers who belong to universities and other institutes on the shared use program of JAEA facilities. Recently, researchers trend to use both facilities with the expansion of demand for the carbon isotope measurement by using the accelerator mass spectrometer (AMS). However, each facility has a spectrometer made by a different manufacturer and equipped with different mechanical components. There is a difference in each ability to the carbon isotope measurement such as background level. This is, for example, due to different ion injection system adapted at each spectrometer. Further, each facility uses a different analytical method adjusted to each main research field. When a researcher uses both facilities, the researcher understands more about the characteristics and need to make a suitable choice of a facility for samples and the analytical method. The report presents a detailed information of characteristics of the spectrometer, sample preparation method and analytical method, and of ability of the measurement based on the inner-comparison test.
Ishimaru, Tsuneari; Ogata, Nobuhisa; Kokubu, Yoko; Shimada, Koji; Niwa, Masakazu; Shimada, Akiomi; Watanabe, Takahiro; Sueoka, Shigeru; Yokoyama, Tatsunori; Fujita, Natsuko; et al.
JAEA-Research 2021-007, 65 Pages, 2021/10
This annual report documents the progress of research and development (R&D) in the 6th fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.
Mitsuguchi, Takehiro; Okabe, Nobuaki*; Yokoyama, Yusuke*; Yoneda, Minoru*; Shibata, Yasuyuki*; Fujita, Natsuko; Watanabe, Takahiro; Kokubu, Yoko
Journal of Environmental Radioactivity, 235-236, p.106593_1 - 106593_10, 2021/09
Times Cited Count:5 Percentile:24.24(Environmental Sciences)For a contribution to developing the usage of iodine-129 (I) as a tracer of deep-seated fluid,
I/
I and
C were measured for annual bands (AD 1931-1991) of a modern coral collected from Northwestern Australia; the measurements were performed using the JAEA-AMS-TONO-5MV for
I/
I and an AMS facility of the University of Tokyo for
C. Results indicate that both
I/
I and
C distinctly increase from 1950s. The
C increase can be ascribed to atmospheric nuclear tests, while the
I/
I increase is due to nuclear-fuel reprocessing as well as atmospheric nuclear tests. These results are in good agreement with previous studies, indicating that the
I/
I measurement by JAEA-AMS-TONO-5MV has been further developed.